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Natural Experiments∗

Rocío Titiunik

Abstract

The term “natural experiment” is used inconsistently. In one interpretation, it
refers to an experiment where a treatment is randomly assigned by someone other
than the researcher. In another interpretation, it refers to a study in which there
is no controlled random assignment, but treatment is assigned by some external
factor in a way that loosely resembles a randomized experiment – often described
as an “as-if random” assignment. In yet another interpretation, it refers to any
nonrandomized study that compares a treatment to a control group, without any
specific requirements on how the treatment is assigned. I introduce an alternative
definition that seeks to clarify the integral features of natural experiments and at the
same time to distinguish them from randomized controlled experiments. I define a
natural experiment as a research study where the treatment assignment mechanism
(1) is neither designed nor implemented by the researcher, (2) is unknown to the
researcher, and (3) is probabilistic by virtue of depending on an external factor.
The main message of this definition is that the difference between a randomized
controlled experiment and a natural experiment is not a matter of degree, but of
essence, and thus conceptualizing a natural experiment as a research design akin to
a randomized experiment is neither rigorous nor a useful guide to empirical analysis.
Using my alternative definition, I discuss how a natural experiment differs from a
traditional observational study and offer practical recommendations for researchers
who wish to use natural experiments to study causal effects.

* I am grateful to Donald P. Green and James N. Druckman for their helpful feedback on multiple versions of this
chapter, and toMarc Ratkovic and participants at the Advances in Experimental Political Science Conference held at
NorthwesternUniversity inMay 2019 for valuable comments and suggestions. I am also indebted to Alberto Abadie,
Joshua Angrist, Matias Cattaneo, Angus Deaton, Guido Imbens, and Luke Keele for their insightful comments and
criticisms, which not only improved the manuscript, but also gave me much to think about for the future. This
chapter has also benefited from my collaborations on natural experiments and observational studies over the years
with Jasjeet Sekhon.
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The framework for the analysis and interpre-
tation of randomized experiments is routinely
employed to study interventions that are
not experimentally assigned but nonetheless
share some of the characteristics of ran-
domized controlled trials. Research designs
that study nonexperimental interventions
invoking tools and concepts from the analysis
of randomized experiments are sometimes
referred to as natural experiments. However,
the use of the term has been inconsistent both
within and across disciplines.

My first goal is to introduce a definition of
natural experiment that identifies its integral
features and distinguishes it clearly from a
randomized experiment where treatments are
assigned according to a known randomization
procedure that results in full knowledge of
the probability of occurrence of each possible
treatment allocation. I call such an experi-
ment a randomized controlled experiment to
emphasize that the way in which the ran-
domness is introduced is controlled by the
researcher and thus results in a known proba-
bility distribution. One of the main messages
of the new definition is that the difference
between a randomized controlled experiment
and a natural experiment is not a matter of
degree, but of essence, and therefore concep-
tualizing a natural experiment as a research
design that approximates or is akin to a ran-
domized experiment is neither rigorous nor a
useful guide to empirical analysis.

I then consider the ways in which a natural
experiment in the sense of the new definition
differs from other kinds of nonexperimental
or observational studies. The central conclu-
sions of this discussion are that, compared to
traditional observational studies where there
is no external source of treatment assignment,
natural experiments (1) have the advantage
of more clearly separating pre- from post-
treatment periods and thus allow for a more
rigorous falsification of its assumptions and
(2) can offer an objective (though not directly
testable) justification for an unconfounded-
ness assumption.

My discussion is inspired and influenced
by the conceptual distinctions introduced
by Deaton (2010) in his critique of experi-
mental and quasi-experimental methods in

development economics (see also Deaton
2020) and is based on the potential
outcomes framework developed by Neyman
(1923[1990]) and Rubin (1974) – see
also Holland (1986) for an influential
review and Imbens and Rubin (2015) for a
comprehensive textbook.

The use of natural experiments in the
social sciences was pioneered by labor
economists around the early 1990s (e.g.,
Angrist 1990; Angrist and Krueger 1991;
Card and Krueger 1994) and has been
subsequently used by hundreds of scholars in
multiple disciplines, including political sci-
ence. My goal is not to give a comprehensive
review of prior work based on natural exper-
iments nor a historical overview of the use
of natural experiments in the social sciences.
For this, I refer the reader to Angrist and
Krueger (2001), Craig et al. (2017), Dunning
(2008, 2012),Meyer (1995), Petticrew (2005),
Rosenzweig and Wolpin (2000), and the
references therein. See also Abadie and Cat-
taneo (2018) for a recent review of program
evaluation and causal inference methods.

6.1 Two Examples

I start by considering two empirical examples,
both of which are described by their authors
as natural experiments at least once in
their manuscripts. The first example is
the study by Lassen (2005), who examines
the decentralization of city government in
Copenhagen, Denmark. In 1996, the city
was divided into 15 districts, and four of
those districts were selected to introduce a
local administration system for four years.
The four treated districts were selected from
among the 15 districts to be representative
of the overall city in terms of various
demographic and social characteristics. In
2000, a referendum was held in the entire
city, giving voters the option to extend
decentralization to all districts or eliminate it
altogether. Lassen compares the referendum
results of treated versus control districts to
estimate the effect of information on voter
turnout. The assumption is that voters in
the treated districts are better informed
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about decentralization than control voters,
and the hypothesis tested is that uninformed
voters are more likely to abstain from voting,
which at the aggregate level should lead to
an increase in voter turnout in the treated
districts. Lassen (2005) considers the assign-
ment of districts to the decentralization/no
decentralization conditions as “exogenously
determined variation” (p. 104) in whether
city districts have firsthand experience
with decentralization. Lassen (2005) then
uses decentralization as an instrument for
information, but I focus exclusively on the
“intention-to-treat” effect of decentralization
on turnout.

The second example is Titiunik (2016),
where I studied the effect of term length
on legislative behavior in the state senates
of Texas, Arkansas, and Illinois. In these
states, state senators serve for four years and
are staggered, with half of the seats up for
election every two years. Senate districts are
redrawn immediately after each decennial
census to comply with the constitutionally
mandated requirement that all districts have
equal populations. But state constitutions
also mandate that all state senate seats must
be up for election immediately after reap-
portionment. In order to comply with this
requirement and keep seats staggered, in the
first election after reapportionment all seats
are up for election, but the seats are randomly
assigned to two term-length conditions:
either serve two years immediately after the
election (and then two consecutive four-year
terms) or serve four years immediately after
the election (and then one four-year term
and another two-year term). Titiunik (2016)
used the random assignment to two-year
and four-year terms that occurred after the
2002 election under newly redrawn districts
to study the effect of shorter terms on
abstention rates and bill introduction during
the 2002–2003 legislative session.

6.2 Two Common Definitions of a
Natural Experiment

The two examples presented above share
a standard program evaluation setup (e.g.,

Abadie and Cattaneo 2018; Imbens and
Wooldridge 2009), where the researcher is
interested in studying the effect of a binary
treatment or intervention (decentralization,
short term length) on an outcome of interest
(voter turnout, abstention rates). They
also have in common that neither study
was designed by the researcher: the rules
that determined which city districts had
temporary decentralized governments or
which senators served two-year terms were
decided, respectively, by the city government
of Copenhagen and the state governments
of Arkansas, Illinois, and Texas – not by the
researchers who published the studies. In
both cases, the researcher saw an opportunity
in the allocations of these interventions to
answer a question of long-standing scientific
and policy interest.

Despite their similarities, the examples
have one crucial difference. In the decentral-
ization study by Lassen (2005), the assign-
ment of districts to the decentralized/not-
decentralized conditions was not determined
by a physical randomization device, but
rather by officials seeking to select treated
districts that were representative of the city as
a whole. In contrast, the assignment of senate
seats to two-year or four-year termswas based
on a fixed-margins randomization device that
gave each senator the same probability of
serving two- or four-year terms.1

Common definitions of the term natural
experiment include the researcher’s lack
of control over the treatment assignment
as an integral feature. At the same time,
researchers who invoke natural experiments
assume that, despite the lack of control
over the assignment of the treatment, some
external forces of nature imbue the design
with some superior credibility for causal
inference relative to other observational
studies where such external factors are
absent. But current definitions of natural
experiments do not explicitly describe the

1 See Titiunik (2016) for details on the assignments
in each state. In Texas, for example, the 35 senate
seats were allocated by creating 17 pieces of paper
marked with “2” and 18 marked with “4,” mixing all
pieces inside a bowl, and having each of the 35 elected
senators draw one piece of paper without looking.
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source of such superior credibility, other than
invoking an analogy between the “natural
experimental” treatment assignment and the
kind of treatment assignment that governs
randomized controlled trials. There are two
ways in which this analogy is made: one is
literal, and the other is figurative, leading to
two common different definitions of a natural
experiment.

In the literal interpretation of Gerber and
Green (2012), p. 15, a natural experiment is
a situation in which there is random assign-
ment of a treatment via a randomization
device, but this assignment is not under
the control of the researcher. According
to this definition, the term length study in
Titiunik (2016) is a natural experiment, but
the decentralization study in Lassen (2005) is
not. Other examples that conform to this
definition of natural experiment include
Erikson and Stoker (2011), who use the
Vietnam draft lottery to study the effect
of the military draft on political attitudes,
and Bhavnani (2009), who uses a rule that
randomly reserves one third of seats to
women candidates in India’s local elections to
study the impact of reservations on women’s
future electoral success.2

This definition has the advantage of being
precise. Understood as a randomized experi-
ment controlled by an external party, a natural
experiment can be analyzed by directly
applying the standard tools from the analysis
of randomized experiments. To be sure, the
interpretation of the estimated parameter can
still pose serious challenges when the groups
that the randomization deems comparable
are not directly informative about the
parameter of scientific interest (Sekhon and
Titiunik 2012).3 But interpretation issues
aside, the assumptions and methods for
estimation and inference under controlled
randomization are well established. Because

2 Gerber and Green (2012), p. 16, following Cook
and Campbell (1979) and Cook et al. (2002), use
the term quasi-experiment to refer to studies such as
Lassen (2005) where no actual randomization device
is employed.

3 Sekhon and Titiunik (2012) consider various exam-
ples of natural experiments where this phenomenon
occurs, including the study by Bhavnani (2009) cited
above.

this definition of a natural experiment is
conceptually clear and its implementation
relatively uncontroversial, it is not the focus
of my discussion.

Instead, my interest lies in another
widely used definition that interprets a
natural experiment as some sort of imperfect
approximation to a randomized controlled
experiment. According to this figurative
definition, a natural experiment is a situation
in which an external event introduces
variation in the allocation of the treatment,
and the researcher uses the external event as
the basis to claim that the treatment is “as
good as random” or “as-if random,” but no
physical randomization device is explicitly
employed by any human being.

Scholars who employ this notion of
natural experiments do not typically offer
a formal definition of “as-if randomness,” but
rather refer heuristically to an analogy or
comparison with randomized experiments.
Different versions of this analogy have
been offered in political science, economics,
public health, and other sciences. In political
science, Dunning (2008) defines a natural
experiment as a study in which the data
come “from naturally occurring phenomena”
(p. 282), where the treatment is not assigned
randomly, but the researcher makes “a
credible claim that the assignment of the
nonexperimental subjects to treatment and
control conditions is ‘as if’ random” (p. 283).
In economics, Meyer (1995) defines a natural
experiment as a study that investigates
“outcome measures for observations in
treatment groups and comparison groups
that are not randomly assigned” (p. 151),
and Angrist and Krueger (2001) define a
natural experiment as a situation “where
the forces of nature or government policy
have conspired to produce an environment
somewhat akin to a randomized experiment”
(p. 73). In public health, Petticrew (2005)
define natural experiments in contrast to
randomized experiments, as designs in which
“the researcher cannot control or withhold
the allocation of an intervention to particular
areas or communities, but where natural or
predetermined variation in allocation occurs”
(p. 752).
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This definition of a natural experiment,
which I shall name the “as-if random” def-
inition, seems to be more common among
empirical researchers than the definition of
Gerber and Green (2012). Most empirical
researchers who invoke natural experiments
refer to cases where a treatment is allocated
by forces outside their control and not based
on a randomization device.

6.3 Conceptual Distinctions

Given the widespread use of the as-if random
interpretation of a natural experiment, my
focus in this chapter is on research designs of
this type. That is, I focus on research designs
where there is no physical randomization
device intentionally controlled by a human
being with the purpose of allocating the treat-
ment, but rather the treatment assignment is
determined by an external factor. However,
I depart from the as-if random definition of
natural experiments and instead present a
definition in which natural experiments are
defined in contrast to randomized experiments
as opposed to akin to them. My definition
encompasses the spirit of the as-if random
understanding of a natural experiment, but
introduces a more rigorous understanding of
the role of experimental manipulation and
random assignment, introducing conceptual
distinctions that have so far remained fused.
My discussion builds most directly on prior
arguments by Deaton (2010) and on several
definitions discussed by Imbens and Rubin
(2015).

The case of experimentation without
randomization is beyond the scope of my
discussion, but is worth considering at least
briefly. Loosely, an experiment is a study in
which the researcher executes a controlled
intervention over some process in order to
test a hypothesis and/or explore potential
mechanisms. An experimental intervention
need not be randomly assigned, and indeed
nonrandom experiments are ubiquitous in
the natural sciences, where there is sufficient
prior knowledge (such as established laws
of physics) to plausibly create a controlled
environment.

Given the meaning of the term experiment,
the term natural experiment seems to be
an oxymoron, since the adjective natural
often refers to the researcher’s lack of
control over the treatment assignment. A
randomized controlled experiment is thus
a special case of an experiment, and the
opposite of an experiment is an observational
study (where the researcher is unable to
intervene in or control the conditions). In my
proposed usage, discussed at length below,
a natural experiment is (oxymoronically) a
special case of an observational study, not
a special case of an experiment. Rather
than changing established usage of these
terms, in the following pages I seek to
clarify the concepts that these terms
refer to.

6.3.1 Randomized Experiments

The first step to arriving at a precise
and encompassing definition of a natural
experiment requires that we define the term
randomized experiment with some precision.
For this, I follow the Neyman–Rubin
potential outcomes framework (Neyman
1923[1990]; Holland 1986; Rubin 1974) and
introduce standard notation. I assume that
the researcher studies a population of n units,
indexed by i = 1, 2, . . . , n, and her goal is to
analyze the effect of a binary intervention
or treatment Z, with Zi = 1 if i is assigned
to the treatment condition and Zi = 0 if i
is assigned to the control. Each unit i has
two potential outcomes corresponding to
each one of the treatment conditions, with
Yi(1) the outcome that i would attain under
treatment and Yi(0) the outcome that i would
attain under control. The observed outcome
is Yi = ZiYi(1) + (1 − Zi)Yi(0), and Xi is
a vector of k covariates determined before
the treatment is assigned (hereafter called
predetermined covariates). The individual-
level variables are collected in the n×1 vectors
(or n × k matrix), Y(1), Y(0), X, and Z.

This notation can be used to describe the
two examples above. In the Lassen (2005)
study, the units are city districts, Zi = 1 if a
district’s government is decentralized and
Zi = 0 otherwise, and Yi is district-level voter
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turnout. In the Titiunik (2016) study, the
units are state senators, Zi = 1 if senator i
serves a two-year term after redistricting
and Zi = 0 if he or she serves a four-year
term instead, and Yi is the abstention rate
or number of bills introduced during the
post-redistricting legislative session.

The vector Z = z gives the particular
arrangement of treated and control units that
occurred. For example, if n = 5 and z =
[1, 0, 0, 1, 1], units 1, 3, and 5 were assigned
to the treatment group and units 2 and 3
were assigned to the control. I define the
assignment mechanism Pr(Z|X,Y(1),Y(0))

as in Imbens and Rubin (2015). This function
gives the probability of occurrence of each
possible value of the treatment vector Z. It
therefore takes values in the interval [0, 1] and
satisfies

∑
z∈{0,1}n Pr(z|X,Y(0),Y(1)) = 1 for

all X,Y(0),Y(1). From this, we can define
the unit-level assignment probability pi as
the sum of the probabilities associated with
all of the assignments that result in unit i
receiving the treatment, pi(X,Y(0),Y(1)) =∑

z:zi=1 Pr(z|X,Y(0),Y(1)).
Imbens and Rubin (2015) define random-

ized experiments in terms of restrictions
placed on the assignment mechanism. I
restate some of these restrictions and their
definition of randomized experiment, which
I then use as the basis of my discussion.

The first restriction I consider requires
that every unit be assigned to treatment
with probability strictly between zero and
one. Formally, Pr(Z|X,Y(0),Y(1)) is a
probabilistic assignment (Imbens and Rubin
2015, p. 38) if

0 < pi(X,Y(0),Y(1)) < 1 for every i,
for each X,Y(0),Y(1). (6.1)

An assignment is probabilistic when every
unit has both a positive probability of being
assigned to the treatment condition and a
positive probability of being assigned to the
control condition – in other words, when
all units are “at risk” of being assigned to
both conditions before the treatment is in
fact assigned. Importantly for our purposes, a
probabilistic assignment rules out determin-
istic situations where, conditional on X,Y(0),

and Y(1), units are assigned to one of the
treatment conditions with certainty.

Given these possible restrictions on the
assignment mechanism, Imbens and Rubin
(2015) offer a definition of a randomized
experiment.

Definition RE (Randomized Experiment,
Imbens and Rubin 2015, p. 40). A random-
ized experiment is a study in which the assignment
mechanism satisfies the following properties:

(C) Pr(Z|X,Y(0),Y(1)) is controlled by the
researcher and has a known functional
form.

(P) Pr(Z|X,Y(0),Y(1)) is probabilistic.

Several aspects of this definition are
relevant for our purposes. First, the word
“randomized” in the definition stems from
condition (P) (probabilistic assignment),
while the word “experiment” stems from
condition (C) (researcher’s knowledge
and control). The researcher designs and
controls the assignment of the treatment,
thus creating an experiment or controlled
manipulation, and this assignment is not
deterministic, in the sense that no unit can
rule out ex ante the possibility of being
assigned to either one of the conditions.

None of the empirical examples intro-
duced above satisfies this definition of a
randomized experiment, but for somewhat
different reasons. In Titiunik (2016), the
assignment mechanism is both probabilistic
and known, but it is not under the researcher’s
control and thus violates the control part
of condition (C). In Lassen (2005), both
parts of condition (C) are violated, as the
researcher has neither control over the
assignment mechanism nor knowledge of
its exact functional form.

Second, this definition clearly separates
the notion of randomization from the notion
of “valid” comparison groups or lack of con-
founders, a distinction that is essential for
characterizing natural experiments. Defini-
tionRE explicitly allows for the potential out-
comes to affect the assignment mechanism,
making clear that a probabilistic assignment
does not guarantee that treated and control
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groups will be comparable, in the sense that
it does not guarantee that the treatment is
(conditionally) independent of the potential
outcomes. Such an unconfoundedness condi-
tion must be added as a separate requirement.

Formally, the assignment mechanism
Pr(Z|X,Y(0),Y(1)) is unconfounded (Imbens
and Rubin, 2015, p. 38) if it satisfies

Pr(Z|X,Y(0),Y(1))
= Pr(Z|X,Y(0)′,Y(1)′) for all

Z,X,Y(0),Y(1),Y(0)′,Y(1)′. (6.2)

An unconfounded assignment is one
in which the probability of each possible
treatment allocation vector is not a function
of the potential outcomes. This property is
violated when, for example, units who have
higher potential outcomes are more likely
to be assigned to the treatment condition
than to the control even after conditioning
on the available observable characteristics.
In general, any study where units self-select
into the treatment based on characteristics
unobservable to the researcher that correlate
with their potential outcomes constitutes an
assignment mechanism that is not uncon-
founded. When a randomized experiment
also satisfies unconfoundedness, Imbens
and Rubin (2015) call it an unconfounded
randomized experiment.

Building on the above definitions, I now
state a definition of a randomized controlled
experiment. (As I discuss below, this defini-
tion is different from Imbens and Rubin’s
definition of an unconfounded randomized
experiment.)

Definition RCE (Randomized Controlled
Experiment). A randomized controlled experi-
ment (RCE) is a study in which the assignment
mechanism satisfies the following properties:

(D) Pr(Z|X,Y(0),Y(1)) is designed and
implemented by the researcher.

(K) Pr(Z|X,Y(0),Y(1)) is known to the
researcher.

(P) Pr(Z|X,Y(0),Y(1)) is probabilistic by
means of a randomization device whose
physical features ensure that Pr(Z|X,
Y(0),Y(1)) is unconfounded.

In a RCE as I have defined it, the assign-
ment mechanism is probabilistic, designed
and implemented by the researcher, known
to the researcher, and not a function of the
potential outcomes (possibly after condition-
ing on observable characteristics). The latter
condition means that the probability that the
treatment assignment vector Z is equal to
a given z is entirely unrelated to the unit’s
potential outcomes, possibly after we have
conditioned on X. My definition of a RCE is
similar to Imbens and Rubin’s definition of an
unconfounded randomized experiment, with
one key difference. In the RCE definition,
condition (P) explicitly requires that uncon-
foundedness be a direct consequence of the
type of physical randomization device used to
allocate the treatment probabilistically. This
explicitly links unconfoundedness to the ran-
domization device.

The joint requirements of full control
of the design and implementation (D)
and knowledge (K) of the assignment
mechanism imply that in a RCE the
treatment assignment mechanism is fully
reproducible. In most cases, full knowledge
and reproducibility of the assignment
mechanism will be direct consequences of the
researcher’s being in control of the treatment
assignment, and thus condition (K) will be
implied by condition (D).

However, sometimes knowledge of the
mechanism occurs despite the researcher not
being in control of the experiment, which is
why I separate conditions (D) and (K) in the
definition. This occurs in experiments where,
just as in a RCE, the treatment assignment is
probabilistic and unconfounded by virtue of
the use of a physical randomization device,
but where the design and implementation
of the assignment mechanism are not under
the control of the researcher. I shall call this
type of experiment a randomized third-party
experiment (RTPE).4 I define it below for
completeness.

Definition RTPE (Randomized Third-
Party Experiment). A randomized third-
party experiment (RTPE) is a study in which

4 Others have called this a randomized policy experi-
ment. See, for example, Clayton (2015).
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the assignment mechanism satisfies the following
properties:

(D′) Pr(Z|X,Y(0),Y(1)) is designed and con-
trolled by a third party.

(K) Pr(Z|X,Y(0),Y(1)) is known or know-
able to the researcher.

(P) Pr(Z|X,Y(0),Y(1)) is probabilistic by
means of a randomization device whose
physical features ensure that Pr(Z|X,
Y(0),Y(1)) is unconfounded.

The inclusion of the word “knowable” in
the RTPE definition is meant to encompass
studies where the probabilities of treatment
assignment are not necessarily known
explicitly, but can be recovered based on other
features of the assignment. An insightful
example is given by Abdulkadiroğlu et al.
(2017), who study a centralized assignment
mechanism, known as deferred acceptance
(DA), that matches students to schools of
their preference. The authors show that
any DA mechanism that satisfies the equal
treatment of equals condition – students
who have the same preferences and priorities
about all schools are assigned to each school
with the same probability – results in a map-
ping from preferences, priorities, and school
characteristics into a conditional probability
of random assignment that can be recovered
via simulation (and also analytically under
some additional assumptions). Although this
example is not a “conventional” randomized
experiment where treatment assignment
probabilities are known ex ante, the DA algo-
rithm gives the experimenter enough knowl-
edge about the assignmentmechanism so that
the probabilities of treatment assignment can
be deduced ex post and then conditioned on to
obtain the conditional independence between
treatment and potential outcomes that would
have held if the school district had explicitly
used those probabilities to assign students
via a lottery. Given the definition above, this
study is a RTPE despite the lack of explicit
probabilities.

6.3.2 Three Senses of the Word “Random”

Some of the ambiguity regarding natural
experiments has stemmed from the failure

to properly distinguish randomness from
unconfoundedness and mistakenly assuming
that randomness in the assignment mech-
anism automatically guarantees treatment
and control groups that are comparable in
all relevant respects. At least part of the
ambiguity seems to stem from the different
senses of the word “random” that are used
sometimes interchangeably to describe both
natural experiments and RCEs.

I now discuss different meanings of
“random” and their relationship to uncon-
foundedness, relying on a related distinction
between externality and exogeneity intro-
duced by Deaton (2010) in his critique of
the use of natural experiments as sources
of instrumental variables (IVs). Following
a terminology first adopted by Heckman,
Deaton distinguishes between an instrument
being “external” to refer to variables that
are determined outside the system, and
“exogenous” to refer to the orthogonality
condition that is needed for consistent
estimation of the parameter of interest in
an IV context. My focus in this chapter is
on studies where interest lies directly on
the effect of Z on Y and not on its effect
via another variable, so I ignore concerns
about the exclusion restriction. However,
I will show that even in this simpler case
the distinction between the externality of
Z and the type of “randomization” that
such externality creates is essential to
understanding the ways in which natural
experiments differ from RCEs.

It is well known that RCEs can violate
the IV exclusion restriction (Angrist et al.
1996). Thus, in IV settings, natural experi-
ments and RCEs are on a more equal footing,
in the sense that neither can guarantee the
identifiability of the treatment effect of inter-
est. When it comes to the “reduced form”
effect of Z on Y , however, natural experi-
ments face unique challenges that are absent
in RCEs. My interest in this section is to
discuss these particular challenges, and for
this reason I focus on the effect of Z on Y .
However, my discussion also applies to IV
settings, because the challenges faced by nat-
ural experiments in identifying the reduced
form effect remain when natural experiments
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are used as a “source of instruments” (Angrist
and Krueger 2001, p. 73).

I consider three different uses of the term
“random,” all of which have been used to
characterize natural experiments – though I
do not mean to imply that these are the only
three ways in which the term “random” has
been used in the history of science.The first is
what I call the colloquial definition of random;
this is the first sense listed by the Merriam-
Webster dictionary, which defines the
adjective random as “lacking a definite plan,
purpose, or pattern,” and further clarifies
that this use “stresses lack of definite aim,
fixed goal, or regular procedure.”Used in this
sense, a random treatment assignment refers
to an assignment mechanism that follows
an arbitrary, inscrutable plan that has no
clear pattern.

The notion of inscrutability is similar
to the concept of Knightian uncertainty
in economics. In his seminal study, Knight
(1921) used the term risk to refer to the
kind of uncertainty that is measurable and
quantifiable with objective probabilities,
and reserved the term uncertainty to
refer to situations where the randomness
cannot be objectively quantified and thus
cannot be insured in the market. A similar
distinction was advanced by Keynes (1921);
see the discussion in LeRoy and Singell Jr.
(1987).

The second meaning of the word
“random” is most likely found in statistics
textbooks. This sense of random, which I
call the statistical definition of random, refers
to situations in which we have uncertainty
about what event will occur, but we can
precisely characterize all possible events
that may occur and exactly quantify the
probability with which each event will
occur (analogous to Knightian risk). In this
sense, a random treatment assignment is an
assignment of units to treatment and control
conditions in which the uncertainty can be
completely and exactly quantified via the
function Pr(Z|X,Y(0),Y(1)), which specifies
the probability of the occurrence of each
possible treatment allocation. Used in the
statistical sense, randomization thus refers to
“the selection of an element a, from a set A,

according to some probability distribution P
on A” (Berger 1990).

In his treatise on experimental design,
Fisher (1935) explicitly rejects the colloquial
sense of random in his definition of a
randomized experiment. While discussing
an agricultural experiment that assigns land
plots to various crops to test the relative yield
of each crop variety, Fisher is explicit in ruling
out haphazardness or arbitrariness:

In each block, the five plots are assigned one
to each of the five varieties under the test,
and this assignment is made at random. This
does not mean that the experimenter writes
down the names of the varieties, or letters
standing for them, in any order that may
occur to him, but that he carries out a phys-
ical experimental process of randomisation,
using means which shall ensure that each
variety has an equal chance of being tested on
any particular plot of ground. (Fisher, 1935,
p. 51)

The above passage suggests yet a third
sense of random, which is in fact a partic-
ular case of the statistical definition. This
third definition equates randomness with a
situation in which all possible outcomes are
equally likely. This is the sense used by Fisher
in the passage above, and evenmore explicitly
described in Fisher (1956) when he discusses
random throws of a die:

… we may think of a particular throw, or of a
succession of throws, as a random sample from
the aggregate, which is in this sense subjec-
tively homogeneous and without recognizable
stratification. (Fisher, 1956, p. 35)

When used in this third sense, a random
assignment mechanism refers to a mecha-
nism that gives every single possible arrange-
ment of treated and control units the same
probability of occurrence. For example, if an
assignment mechanism allocates exactly nt
units to treatment and n − nt units to con-
trol, it is random in this sense if Pr(Z =
z|X,Y(0),Y(1)) = 1/

( n
nt

)
for all z. I call this

the equiprobable sense of random.
In sum, the three senses of random refer

to three different kinds of uncertainty. The
colloquial sense means uncertainty that is
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arbitrary and inscrutable, not amenable to
characterization by a clear pattern. The
statistical sense of random refers to uncer-
tainty that can be precisely characterized by
a known probability distribution. And the
equiprobable sense of random is a particular
case of the statistical sense and refers to
uncertainty that is characterized by a known
probability distribution that assigns equal
probability to each possible outcome.

The ambiguous and overlapping usage of
the term “random” is why defining a natu-
ral experiment as having an “as-if” random
treatment assignment lacks statistical rigor.
If random is used in the colloquial sense,
then the “as-if” qualifier is not needed and
distorts meaning, as random in the collo-
quial sense already refers to an arbitrary/in-
scrutable assignment. If random is used in
the statistical sense, the “as-if” qualifier is
simply incorrect. The assignment vector Z is
a random variable, and as such it has some
distribution over the sample space of assign-
ments. Used in the statistical sense, a natural
experiment has a real random assignment, not
an “as-if” random assignment. Finally, used in
the equiprobable sense, a natural experiment
is typically not random at all: earthquakes
are more likely to destroy huts than con-
crete buildings, rain on election day is more
likely in Seattle than in Arizona, and abortion
restriction laws are more likely to be passed
in socially conservative than in socially liberal
constituencies.

6.3.3 Random Assignment Does Not Imply
Probabilistic Assignment

An assignment mechanism that is random
in either the statistical or the equiprobable
sense need not be probabilistic in the sense of
Eq. (6.1). For example, neither the statistical
nor the equiprobable definition of random
rules out a treatment assignment mechanism
in which all units are assigned to treatment
with probability one. This point is trivially
true – a constant is a special case of a random
variable in which all the probability mass is
accumulated at a single value – but it mat-
ters for our purposes. Of course, since ran-
dom assignment is usually discussed in the

context of evaluating the effects of receiving a
treatment relative to not receiving it, the exis-
tence of a comparison group in this context
is presupposed. This is why Fisher does not
explicitly include “probabilistic” in his defi-
nition of random, but it is clear that he does
so implicitly. Informally, the requirement that
the assignment be probabilistic is essential if
our purpose is to obtain comparable treated
and control units; otherwise, the treatment
assignment may be perfectly correlated with
confounders.5

The colloquial sense of random does rule
out the particular deterministic assignment
that assigns every unit to treatment (or to
control), since in this case a very clear pattern
of assignment would be discernible.However,
other forms of nonprobabilistic assignments
are still compatible with the colloquial notion
of randomness. For example, Fisher’s farmer
could decide that plots on the edge of the
property line will always be assigned to the
same crop. This decision would be entirely
arbitrary, thus satisfying the colloquial def-
inition of random. Moreover, to the exter-
nal observer, this nonprobabilistic assignment
would be hard to catch, unless he or she hap-
pens to measure the proportion of boundary
plots in treatment versus control groups.This
point turns out to be important: in natu-
ral experiments, since the assignment mech-
anism is unknown to the researcher, he or
she will not be able to distinguish probabilis-
tic from deterministic assignments, because
the assignment could be deterministic condi-
tional on a characteristic that is unobserved
to the researcher – which would misleadingly
give the appearance of a probabilistic assign-
ment.

A probabilistic assignment is therefore an
assignment that is random in the statistical
sense, with the added restriction that the
probability distribution that characterizes

5 See Heckman et al. (1998) for a formal character-
ization of the bias introduced by violations of a
probabilistic assignment in the context of selection
on observables, which also applies immediately to
stratified randomized experiments. If the assignment
is deterministic for units with certain characteristics
X = x, this introduces a lack of common support
that impedes obtaining valid causal effects even if the
assignment is unconfounded.
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the randomness not assign extreme (i.e., zero
or one) individual probabilities.

6.3.4 Random Assignment Does Not Imply
Unconfoundedness

In a randomized experiment as stated in
Definition RE, no unit has perfect control
over which treatment it receives, in the sense
that all units have ex ante probability of being
assigned to both the treated and control
conditions. The assignment is therefore
random in the statistical sense, governed by
Pr(Z|X,Y(0),Y(1)). However, a probabilistic
assignment does not imply an unconfounded
assignment.

This point is easy to see in terms of our
decentralization example. Imagine that in
the Lassen (2005) study some city districts
have high crime and reducing crime is the
top priority of government administrators.
Imagine also that decentralization gives
districts more precise tools to combat and
reduce crime. To say that the assignment
is probabilistic or “randomized” is to say,
for example, that districts lack the ability
to perfectly and precisely self-select into
the decentralization treatment that they
believe will result in the most effective crime
reduction. But this does not mean that high-
crime districts have the same probability of
being decentralized as low-crime districts.
Perhaps officials from high-crime areas
forcefully express their strong preference for
decentralization to city administrators, and
this results in their having a larger probability
of receiving the treatment than low-crime
areas. A probabilistic assignment only means
that this probability is not one (nor zero);
it does not mean that different types of
units have the same probability of receiving
treatment. If assignments with decentralized
high-crime areas are more likely than
assignments with decentralized low-crime
areas, a naive, unadjusted comparison of
treated versus control outcomes will not yield
a consistent estimate of the average effect of
decentralization. A valid comparison requires
that we reweight or stratify the observations
based on the different probabilities of
receiving treatment, something that is easy

to do if we know the exact functional form of
Pr(Z|X,Y(0),Y(1)), but entirely unfeasible if
this assignment mechanism is unknown and
unknowable.

One way to think of a confounded assign-
ment is as a blocked randomized experiment
in which different “types” of individuals
defined by potential outcomes are assigned
to treatment with different probabilities. For
example, imagine that all units have the same
potential outcome under control, Yi(0) = y0
for all i. Defining high types as units with
Yi(1)− y0 > 0 and low types as units with
Yi(1) − y0 ≤ 0, we can conceive of a random-
ized experiment that violates unconfounde-
ness as a blocked randomized experiment
where high types are assigned to treatment
with higher probability than low types and
types are unobservable to the researcher.
It is well known that the proper analysis
of a stratified randomized experiment with
treatment assignment probabilities that vary
by strata or blocks requires accounting for the
different strata, which in turn requires know-
ing the strata to which every unit belongs
(see, e.g.,Athey and Imbens 2017;Gerber and
Green 2012; Imbens and Rubin 2015). In this
example, failing to account for the different
strata would overestimate the true average
treatment effect. In general, obtaining valid
conclusions from an unconfounded block-
randomized experiment is not feasible when
the strata remain hidden from the researcher.
In other words, chance does not imply
comparability.

Finally, note that randomness in the
equiprobable sense does imply unconfound-
edness. An assignment mechanism that is
equiprobable is also unconfounded: any
assignment that gives each vector z the
same probability of being chosen is by
construction attaching a constant probability
to each z, which as a consequence cannot
be a function of the potential outcomes. But
the converse is not true: an unconfounded
assignment mechanism does not imply that
each possible treatment assignment vector
z must be equally likely. For example, a
mechanism that uses a random device to
allocate two-thirds of women and one-third
of men to treatment is unconfounded, but
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it is not random in the equiprobable sense
when all units are considered as a whole
(though it is equiprobable within gender
blocks). An equiprobable random assignment
mechanism is perhaps the simplest way
to ensure an unconfounded assignment,
which may be why the term “random
assignment” is often used as a synonym for
unconfoundedness.

6.3.5 Physical Devices or Procedures That
Ensure Unconfoundedness

Because a probabilistic assignment mecha-
nism does not imply that the mechanism is
unconfounded, it follows that the superior
credibility of RCEs does not stem exclusively
from random chance. Although chance or
uncertainty are needed to ensure condition
(P) in the RCE definition, chance alone
is not enough to bestow an experiment
with the ability to identify causal effects.
Somewhat counterintuitively, part of the
power of randomized experimentation lies
not in the creation of uncertainty, but rather
in the use of physical randomization devices
or procedures that are capable of assigning
treatments without being influenced by the
units’ potential outcomes. By a physical
randomization device or procedure I mean
a set of rules that allows the researcher to
assign the treatment according to a known or
knowable probability distribution function.6
These procedures are more than the means
by which the end of probabilistic assignment
is achieved; they ensure that chance is intro-
duced in a way that ensures identification
of causal effects and the quantification of
uncertainty.

Without a physical randomization device
that ensures knowledge of the probability
distribution of the assignment mechanism,

6 These rules could rely on assignment probabili-
ties implicitly rather than explicitly, as in Abdulka-
diroğlu et al. (2017). The key requirement is that
the researcher be able to fully recover and reproduce
the induced probabilities of treatment assignment,
even if those probabilities were not explicitly used to
assign units.

chance is not necessarily helpful. To see this,
consider the following strategies to introduce
a probabilistic treatment assignment. We
could stack paper applications on a desk
and blow a fan at them and then assign
to treatment the applications that fall to
the floor. Or we could have an octopus
select applications,7 or let Fisher’s farmer
choose the applications “in any order that
may occur to him.” All of these strategies
would be random in the colloquial sense. It
might also be plausible to assume that all of
these strategies would lead to a probabilistic
assignment in the sense that, a priori, all
applications would have a nonzero chance of
being selected for treatment and for control –
though this may be difficult to verify.
However, it would be premature to claim
that the assignment is unconfounded. For
example, if the original pile of applications on
the table were sorted alphabetically with Z at
the bottom and A at the top and the wind was
more likely to blow away top applications,
we would have more names in the A–L
part of the alphabet assigned to treatment
than to control. Since, for example, ethnicity
often correlates strongly with last name, our
treatment and control groups would very
likely differ on ethnicity, and as a result
on any other observable and unobservable
characteristics that may correlate with it, such
as immigration status, political orientation,
neighborhood of residence, etc.

Examples of physical randomization pro-
cedures are varied. Fisher (1935) describes
a device based on a deck of cards for an
agricultural experiment in which five plots
of land are to be assigned randomly to five
fertilizer varieties. Cards are numbered from
1 to 100 and repeatedly shuffled so that they
are arranged in random order; the five treat-
ments are numbered 1–5; and the experi-
menter draws one card for every plot. The
fertilizer assigned to the plot is the remainder
obtained when the number on the drawn
card is divided by 5 if the number is not a
multiple of 5; if it is, the plot is assigned to
fertilizer 5. This procedure guarantees that

7 See the case of Paul the psychic of Oberhausen (e.g.,
www.bbc.com/news/10420131).

www.bbc.com/news/10420131
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the each fertilizer variety corresponds to 20
cards; since there are 100 cards, the probabil-
ity that each plot is assigned to each of the
fertilizer varieties is 1/5.

Another randomization device is a rotating
lottery drum where the researcher deposits
balls or tickets containing numbers repre-
senting each of the experimental units. The
balls or tickets are drawn after rotating the
drum, ensuring that at any point each of the
remaining balls has the same probability of
being selected. This procedure was used, for
example, to assign each one of the integers
between 1 and 366 to each one of the possi-
ble birth dates in a year (including February
29) to select who would be drafted to the
Vietnam War, the numbers 1–366 indicating
the order in which men would be drafted.
(The Vietnam lottery, however, seems to have
failed to produce equally likely outcomes; see
discussion below.)

In scientific studies conducted today,
the most common mechanism to allocate
treatments randomly is based on computer-
generated pseudorandom numbers. The
principles underlying the generation of
pseudorandom numbers offer important
lessons for our discussion. Pseudorandom
numbers can be generated in multiple ways,
but all of them share the characteristic of
being entirely predictable, directly ruling
out the colloquial definition of random. For
example, the Lehmer linear congruential
algorithm (Lehmer 1951; Park and Miller
1988) requires the choice of a prime modulus
m, an integer a ∈ 2, 3, . . . ,m − 1, and an initial
value x0. The value x1 is generated as x1 = ak
where k ≡ x0 mod m is the remainder when
x0 is divided by m, and all subsequent values
are generated as xi+1 = axi mod m. Given
the initial value x0, the entire sequence
is entirely determined, which illustrates
the fundamental distinction between the
colloquial and the statistical definitions of
random, lucidly summarized by Park and
Miller:

Over the years many programmers have
unwittingly demonstrated that it is all too
easy to “hack” a procedure that will produce
a strange looking, apparently unpredictable

sequence of numbers. It is fundamentally more
difficult, however, to write quality software
which produces what is really desired – a
virtually infinite sequence of statistically
independent random numbers, uniformly dis-
tributed between 0 and 1. This is a key point:
strange and unpredictable is not necessarily
random. (Park and Miller 1988, p. 1193)

Formally demonstrating that random-
ization devices do in fact produce an
equidistributed sequence of numbers is
difficult, both because the physical properties
of certain randomization devices can be
complex (e.g. Aldous and Diaconis 1986) and
because demonstrating (and even defining)
the randomness of a sequence is a hard
mathematical problem (see, e.g.,Downey and
Hirschfeldt 2010; Pincus and Kalman 1997;
Pincus and Singer 1996). Nonetheless, with
our current knowledge of mathematics and
algorithmic randomness, several randomiza-
tion devices such as pseudorandom number
generators or sufficiently shuffled cards are in
fact able to produce independent, uniformly
distributed numbers. I refer to such devices as
proper randomization devices to distinguish
them from randomization devices that appear
but ultimately fail to produce equidistributed
sequences.

The feature that proper randomization
devices have in common is that: (1) the alloca-
tion of units to the treatment/control condi-
tions that they produce is entirely determined
by their physical and statistical properties,
which are by construction unrelated to the
units’ potential outcomes and thus result in
an unconfounded assignment mechanism;
and (2) these properties are known and well
understood, which in turn implies that the
assignment mechanism is entirely known
or knowable and thus reproducible. Thus,
proper physical randomization devices not
only ensure that there is an element of chance
regarding which units receive treatment,
but also, by their very properties, they
simultaneously guarantee that the assignment
mechanism is unconfounded.

The use of a proper physical random-
ization device is as fundamental in its role
to ensure unconfoundedeness as in its
role to ensure random chance. We could
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introduce chance in treatment assignment
using fans, octopus, or earthquakes. But
only a fully known and reproducible physical
randomization procedure guarantees the type
of randomness that can be used as the basis
for inference and identification.

This guarantee, however, is not bullet-
proof. There are numerous and notable
examples where the physical properties of
randomization devices failed to produce
unconfounded assignments because they
were mistakenly believed to be proper
devices. For example, the implementation
of the 1970 Vietnam lottery is believed
to have been defective (the capsules not
sufficiently mixed), assigning systematically
lower numbers to birth dates in later
months, contrary to the uniform distribution
that the lottery drum was supposed to
produce (see, e.g., Fienberg 1971). This
is a case where the physical properties of
the device were mistakenly believed to
produce an equiprobable assignment. For
another example, see the Lanarkshire milk
experiment (Student 1931).

Such “failures of randomization” can
invalidate a RCE or RTPE, unless the
true probabilities induced by the defective
randomization device can be learned or
discovered. However, note that in the case
of the Vietnam lottery, researchers were able
to detect the departure from an equiprobable
assignment precisely because they believed
that the physical randomization device
guaranteed such an assignment and because
an equiprobable assignment has objective
empirical implications (similar number of
observations per birth month, etc.). This
ability to detect departures from a known
randomization distribution is only possible
when such a distribution can be specified ex
ante. It is precisely because we believe that the
Vietnam lottery drums should have produced
a uniform assignment that we discover that
something must have been wrong with the
device (or with our beliefs about the device).

In contrast, in natural experiments,
because we fundamentally ignore the
distribution of the external assignment
mechanism, we have no way of using the
observed assignment to validate our beliefs

about the physical randomization device
used by nature, at least not in the absence
of additional assumptions.

6.4 An Alternative Definition of
Natural Experiment

The key feature of the as-if random
interpretation of a natural experiment
is the existence of an external factor or
phenomenon that governs the allocation
of treatment among units. This external
phenomenon is most commonly ruled by the
laws of nature (earthquakes, hurricanes, etc.)
or the laws of government (minimum age
restrictions, voting rules, etc.) and results in a
treatment assignment that has been variously
described as haphazard (Rosenbaum 2002),
as-if random (Dunning 2008), naturally
occurring (Rutter 2007), not according to
any particular order (Gould et al. 2004),
serendipitous (DiNardo 2016; Rosenzweig
and Wolpin 2000), unanticipated (Carbone
et al. 2006), unpredictable (Dunning 2012),
unplanned (Lalive and Zweimüller 2009),
quasi-random (Fuchs-Schündeln and Hassan
2016), or a shock (Miguel et al. 2004).

As discussed above, an arbitrary and
unpredictable treatment assignment implies
neither unconfoundedness nor knowledge
(and thus reproducibility) of the assignment
mechanism – two distinctive features of
RCEs and RTPEs. For this reason, I
introduce a definition of a natural experiment
that preserves the externality of the treatment
assignment mechanism but, in contrast
to prior interpretations, emphasizes its
nonexperimental qualities rather than its
“as-if randomness.” In my definition, the
external phenomenon that governs treatment
assignment ensures (in successful cases) that
the assignment mechanism is probabilistic,
but not that it is unconfounded.

I first distinguish RCEs from observa-
tional studies and then define a natural exper-
iment as a particular case of an observational
study. For this, I consider two dimensions.
The first is whether the researcher is in
control of the design and implementation
of the experiment. The second dimension
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Table 6.1 Typology of randomized experiments and observational studies.
Probabilities known or knowable to researcher

Yes No

Designed and implemented Yes Randomized controlled experiment (RCE) Observational studyby the researcher No Randomized third-party experiment (RTPE)

is whether the probabilities associated
with each possible treatment allocation are
known (or knowable). The four possible
combinations of these two criteria are
illustrated in Table 6.1.

Given a probabilistic treatment assign-
ment, the difference between a randomized
experiment and a nonexperimental design
depends crucially on both knowledge and
control of the assignment mechanism.
When a researcher controls the design and
implementation of a probabilistic treatment
assignment, he or she has full knowledge of
all of the probabilities associated with each
possible treatment allocation. As a conse-
quence, the randomization procedure is fully
known and reproducible. This combination,
represented by the top-left corner of Table
6.1, corresponds to RCEs as defined above.
The rows of the table correspond exactly with
condition (D) in the definition of a RCE.
Condition (P) in the definition is satisfied
implicitly if we assume that when a researcher
designs and controls the assignment, he or
she chooses a probabilistic assignment.8 And
the unconfoundedness assumption (U) is
implied by the assumption that the treatment
allocation probabilities are fully known.9

8 If the assignment has pi ∈ {0, 1} for some units,
the population of interest could be redefined to only
include those units whose probabilities are neither
zero nor one.

9 For example, if a researcher uses a higher proba-
bility of treatment assignment for patients who are
known to benefit the most from treatment, this would
appear to violate the unconfoundedness assumption.
However, since we are assuming that the researcher
designed the experiment, he or she would know and
be able to reproduce all treatment assignment prob-
abilities for every unit, thus making the high/low
potential benefit strata fully observable, which would
restore unconfoundedness (conditional on potential
benefit). Even if all units are assigned to treatment
with a different probability and there are no strata,
knowing these probabilities is sufficient to consis-
tently estimate the average treatment effect and per-
form exact Fisherian inference based on the sharp
null hypothesis. As long as all probabilities are fully

Being in charge of the design and imple-
mentation of the randomized experiment,
however, is a not a necessary condition to
having full knowledge of the assignment
mechanism. Researchers often discover
randomized experiments that are designed
and implemented by third parties such as
policymakers. In some cases, the third party
is willing to disclose all details regarding the
assignment mechanism, and as a consequence
all probabilities of treatment assignment
become known to the researcher despite
him or her not being in direct control of
the experiment. In Definition RTPE, I called
this a randomized third-party experiment.
RTPEs belong in the bottom-left cell of
Table 6.1, where probabilities are known
or knowable but the experiment is either
not designed or not implemented by the
researcher, or possibly both. If the treatment
assignment mechanism is known, then even
when the researcher is not in control of
the assignment as in Titiunik (2016), well-
defined treatment effects are identifiable,
inference methods for the analysis of
randomized experiments are ensured to be
valid, and assumptions are falsifiable.

Regardless of who designs and implements
the experiment, if the probabilities associated
with each possible treatment allocation
are unknown to the researcher, the design
is nonexperimental – also known as an
“observational study.” My definition of an
observational study follows Imbens and
Rubin (2015), who define it as a study in
which “the functional form of the assignment
mechanism is unknown” (p. 41). In contrast
to a RTPE, where the lack of direct design
or implementation is accompanied by
knowledge of the probability of occurrence of
each treatment allocation, in an observational

known, the possibility of violating unconfoundedness
does not arise or is inconsequential.
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study the researcher fundamentally ignores
or has no access to these probabilities.

In practice, cases that belong to the top-
right cell of Table 6.1 are rare because a
randomized experiment that is designed and
implemented by the researcher typically
implies that the treatment assignment
mechanism is fully known to the researcher.
However, there might be cases where
the researcher controls the treatment
assignment, but either the design or
the implementation is faulty and as a
consequence the exact treatment allocation
probabilities are unknown – examples include
the Vietnam lottery and the Lanarkshire milk
experiment mentioned above.

Given the above distinctions, I now intro-
duce a new definition of natural experiment.

Definition NE (Natural Experiment). A
natural experiment is a study in which the assign-
ment mechanism satisfies the following properties:

(D̃) Pr(Z|X,Y(0),Y(1)) is neither designed
nor implemented by the researcher.

(K̃ ) Pr(Z|X,Y(0),Y(1)) is unknown and
unknowable to the researcher.

(̃P) Pr(Z|X,Y(0),Y(1)) is probabilistic by
virtue of an external event or intervention
that is outside the experimental units’ direct
control.

This definition is intentionally analogous
to my prior definitions of a RCE and a
RTPE to facilitate a comparison. A natural
experiment is a research design where the
researcher is in charge of neither the design
of the treatment assignment mechanism nor
its implementation (condition D̃). Moreover,
the treatment assignment mechanism is
unknown and unknowable (condition K̃ ),
which means that the researcher does not
know and has no way of knowing the
probabilities associated with each possible
treatment allocation. The latter condition –
assignment mechanism unknowable – imme-
diately implies that a natural experiment is an
observational study.

The third and last condition in the defini-
tion (̃P) captures what has often been invoked
as the main feature of a natural experiment:

its unpredictability as a result of the assign-
mentmechanism’s dependence on an external
factor. A natural experiment is a special kind
of observational study where the mechanism
that allocates treatment is known to depend
on an external factor. In my definition, this
external factor is assumed to be the source
of randomness that results in a probabilis-
tic assignment mechanism and thus captures
the unpredictable component that has been
emphasized in prior characterizations of nat-
ural experiments.

Note that condition P̃ is not directly ver-
ifiable or falsifiable. Although the existence
of the external factor will typically be imme-
diately verifiable, verifying that this external
factor resulted in a probabilistic assignment
will be considerably more difficult and often
impossible.Thus, classifying an observational
study as a natural experiment will require
assuming that the external forces of nature
that intervened in the assignment of treat-
ment did so in such a way as to produce a
probabilistic assignment. The justification of
this assumption will often rest on the argu-
ment that the experimental units have no
ability to directly control the external fac-
tor and thus have no ability to choose their
treatment condition deterministically. This is
a heuristic rather than a formal argument,
as the units’ lack of control of their own
assignment is not by itself sufficient to ensure
a probabilistic assignment – rather, the lack
of control introduced by the external factor is
simply used as the basis for assuming that the
assignment was governed, at least partly, by
chance.

In a standard observational study, it is often
impossible for the researcher to know which,
if any, of the units that actually took the
treatment were ex ante at risk of not taking
it. In contrast, in a natural experiment, there
is an external factor that serves as the basis
for making such an assumption. Although
the probability of receiving treatment is still
possibly a function of potential outcomes, it
is also affected by an external factor over
which the units have no precise control. For
example, even though families can choose to
invest in more durable construction materials
to protect against earthquakes or floods, the
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severity of natural disasters is not under any
family’s control, and thus it is impossible for
a family to precisely and perfectly guaran-
tee that their house will not be destroyed
by a natural disaster, which introduces an
element of chance as to which houses are
in fact destroyed. The distinction is similar
to that introduced by Lee (2008) between
“systematic or predictable components that
can depend on individuals’ attributes and/or
actions” and a “random chance component”
that is uncontrollable from the point of view
of the unit (Lee 2008, p. 681).

Crucially, the externality is not absolute,
but relative to the units who are receiving the
treatment. This external factor implies that
the units lack precise control over the treat-
ment condition they will receive, and thus
that the treatment assignment mechanism is
not fully under the control of the units who
are the subjects of the study. Thus, external
means “external to units,” not necessarily to
other actors.

For example, in the Lassen (2005)
study, the assignment of districts to the
decentralization condition depended on
various factors. Some of those factors are
units’ characteristics such as population size
and suburban status. These are examples of
characteristics X that may be correlated with
the units’ potential outcomes and determined
before the treatment is assigned. But Lassen’s
account of the decision process that governed
the decentralization policy suggests that,
despite their different characteristics, all of
the districts in the sample were at risk of
being assigned to the decentralization group.
The assumption of probabilistic assignment
is supported by the policymakers’ account
of how the decentralization policy was
carried out.

However, even if condition (P̃) holds
and the assignment is in fact probabilistic
by virtue of the external factor, there
remains a crucial obstacle. The central
distinction between a RCE or RTPE and
a natural experiment as I have defined it
is that, in a natural experiment, the exact
probabilities with which each possible
treatment allocation could have occurred
are fundamentally unknown. Thus, even if

the external factor prevents the experimental
units from having precise control over
which treatment condition they receive,
the researcher has fundamental uncertainty
about the actual probabilities associated
with each allocation. Thus, a research
design that satisfies Definition NE is still
insufficient to identify or make inferences
about causal effects, and researchers need to
invoke additional assumptions. I elaborate
on this issue in the following two sections,
after discussing the particular case of the
regression discontinuity design.

6.4.1 Is the Regression Discontinuity
Design a Natural Experiment?

I now discuss whether Definition NE applies
to the regression discontinuity (RD) design,
a research design that has become widely
used throughout the social and behavioral
sciences (for overviews, see Cattaneo et al.
2020a, 2020c). Part of the popularity of
the RD design stems from the idea that
the RD treatment assignment resembles the
assignment in RCEs, and thus its credibility
is similar to the credibility of an actual
experiment. The notion of “as-if random”
or “akin to random” appears frequently in
discussions of RD designs, which suggests
that any general discussion surrounding
natural experiments should apply to RD
designs in particular.

A RD design is a study in which all units
receive a score (also known as a running vari-
able), and a treatment is allocated according
to a specific rule that depends on the unit’s
score and a known cutoff. In the simplest,
binary treatment case, the rule assigns the
treatment condition to units whose score
is above the cutoff and assigns the control
condition to units whose score is below it.
Letting Ri be the score for units i = 1, 2, . . . , n
and r0 be the cutoff, each unit’s treatment
assignment is Ti =1(Ri ≥ r0). This rule
implies that, conditional on R, the treatment
assignment is deterministic, since P(Ti = 1|
Ri ≥ r0) = 1 and P(Ti = 1|Ri < r0) = 0.
All RD designs rely on this discontinuous
change in the probability of treatment
assignment to study the effect of the
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treatment at the cutoff, under the assumption
that this probability is the only relevant
feature of the data-generating process that
changes discontinuously at the cutoff – or,
more precisely, under the assumption that
the distribution (or expectation) of the units’
potential outcomes is continuous at the
cutoff.

A canonical RD example, first introduced
by Lee (2008), is one in which the treatment
of interest is winning an election, and the
score is the vote share obtained by a political
party. Under plurality rules with only two
candidates, the party wins the election if it
obtains 50% of the vote or more and it loses
otherwise. Although districts where the party
wins will not in general be comparable to
districts where the party loses, one interpre-
tation of the RD design poses that in districts
where the election is very close, chance plays
a role in deciding the ultimate winner.

Some scholars have claimed that the RD
treatment assignment rule induces variation
in the treatment assignment that is as good
as the variation induced by a RCE, elevating
RD designs above most other observational
studies.The analogy betweenRDdesigns and
randomized experiments has been invoked
frequently to justify the classification of the
RD design as an almost-experiment and its
treatment assignment as “as-if random.”
DiNardo (2016), p. 7 observes that “if we
focus our attention on the difference in
outcomes between ‘near winners’ and ‘near
losers’ such a contrast is formally equivalent
to a randomized controlled trial if there is
at least some ‘random’ component to the
vote share.” Lee (2008), p. 676 argues that
“causal inferences from RD designs can
sometimes be as credible as those drawn from
a randomized experiment,” while Lee and
Lemieux (2010) call RD designs the “close
cousins” of randomized experiments.

These analogies between RD designs
and randomized experiments are based on
the role of unpredictability in the final
treatment assignment. Dunning (2012)
sees unpredictability as the source of
comparability, asserting that “given the
role of unpredictability and luck in exam
performance, students just above and below

the key threshold should be very similar, on
average.” Lee (2008) also views uncertainty
as the source of comparability, asserting that
“Even on the day of an election, there is
inherent uncertainty about the precise and
final vote count. In light of this uncertainty,
the local independence result predicts that
the districts where a party’s candidate just
barely won an election ... are likely to be
comparable in all other ways to districts
where the party’s candidate just barely lost
the election” (Lee 2008, pp. 676–677).

The RD design fits the definition of a
natural experiment that I introduced above.
Its assignment mechanism is typically neither
designed nor controlled by the researcher.
Moreover, although it seems that the RD
treatment rule T = 1(R ≥ r0) makes the
assignment mechanism fully known, it is only
known conditional on R. Given a unit’s score
value, the researcher knows whether the
probability of being assigned to treatment
was zero or one. However, the researcher
fundamentally ignores the probability
distribution of the score R, which implies
that, in any window around the cutoff, certain
types of individuals could have been more
likely than others to receive a score above
the cutoff. If types correlate with potential
outcomes, then units barely above and barely
below the cutoff will not be comparable
unless we condition on type. Sekhon and
Titiunik (2017) discuss this point at length
and show that random assignment of the RD
score in a neighborhood of the cutoff does
not imply that the potential outcomes and the
treatment are statistically independent, nor
that the potential outcomes are unrelated to
the score in this neighborhood.

This distinction is analogous to the
distinction between probabilistic and
unconfounded assignment. The element of
chance contained in the ultimate value of
the score that a unit receives implies that
the assignment mechanism is probabilistic.
Consider a RD design where a scholarship is
given to students whose grade in an exam is
above a known threshold.Even good students
can see their exam performance adversely
affected by ambient noise, unexpected
illnesses, or unreasonably hard questions.
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This means that there is an element of
chance in the ultimate grade that any
student receives. This element of chance,
in combination with the RD rule, implies
that a student’s placement above or below the
cutoff is a random variable. Its probability
distribution, however, is fundamentally
unknown to the researcher.

Observing the scores assigned to the
units in a RD design is analogous to
observing the treatment status of each unit
in an experiment where the probability of
treatment assignment of each unit is hidden
from or unknown to the researcher. This
means that if we adopt a local randomization
approach to RD designs (Cattaneo et al.
2015, 2017, 2020a, 2020b), where we focus
on a window or neighborhood around
the cutoff and use units whose scores are
below the cutoff as a comparison group for
treated units whose scores are above it, it is
natural to imagine that treated units with
Ri = r0 + ε could have instead received a
score of Ri = r0− ε and thus could have been
assigned to the control group. It therefore
seems plausible to assume that the treatment
assignment in a small window around the
cutoff is probabilistic, and it is probabilistic
by virtue of the unpredictable components
of R, in combination with the external RD
rule T = 1(R ≥ r0). This implies that the
RD design satisfies the definition of a natural
experiment that I have proposed.

My conclusion concurs with DiNardo’s
(2016) and Dunning’s (2012) character-
izations of the RD design as a natural
experiment, but for different reasons. While
these authors see the RD design as akin
to an experiment, my understanding of
the RD design as a natural experiment
stems from its status as an observational
study where an external rule justifies the
assumption that the treatment assignment
is probabilistic. Understanding RD designs
as natural experiments in the sense of
Definition NE separates the notion of
chance from the notion of comparability: the
probabilistic nature of the RD assignment
implies neither that the RD assignment
mechanism is knowable nor that it is
equiprobable.

6.5 Advantages of Natural
Experiments over Traditional
Observational Studies

A natural experiment is fundamentally
different from a RCE because its treatment
assignment mechanism is unknown and
unknowable to the researcher. For this
reason, in the hierarchy of credibility of
research designs for program evaluation,
natural experiments rank below RCEs.10 At
the same time, the most convincing natural
experiments rank above other observational
studies where the assignment mechanism is
not known to depend on a verifiable external
factor. The reason for this is that natural
experiments, by virtue of the assignment’s
dependence on this external factor, offer
clear guidelines to distinguish a pretreatment
from a post-treatment period. Moreover, in
some cases, the external factor in natural
experiments offers a plausible claim of
unconfoundedness.

I shall refer to an observational study
where no external factor is known to
affect treatment assignment as a traditional
observational study. As an example of such
a study, I consider the influential analysis of
the determinants of political participation by
Brady et al. (1995). These authors propose
a resource theory of political participation
that expands the traditional socioeconomic
status (SES) model that focused on income
and education as determinants of political
participation. Their expanded model is
centered on three types of resources: time,
money, and civic skills. Their hypothesis
is that the amount of each of these three
resources available to an individual has a
positive effect on that individual’s political
participation.

The data come from a representative tele-
phone survey of the US adult population that
collected self-reported data on respondents’
political and civic participation and also
demographic and economic characteristics.

10 Deaton and Cartwright (2018) (and see also Deaton
2010, 2020) reject the idea that research designs can
be ranked in terms of credibility. In response, Imbens
(2010) argues that such a ranking is possible in a ceteris
paribus sense (see also Imbens 2018).



122 Rocío Titiunik

Both the outcome (political participation)
and the treatments of interest (time, money,
and civic skills) are measured with data from
this survey. In particular, money resources
are measured as self-reported family income;
civic skills are measured with educational
attainment questions, a vocabulary test, and
self-reported participation in nonpolitical
organizations such as churches and schools;
and time is measured as the hours left
in an average day after subtracting time
spent sleeping, working, studying, and doing
household work.

A comparison of this traditional observa-
tional study with the natural experiment by
Lassen (2005) offers important lessons. The
assignment mechanism is unknown in both
cases. Similarly to the Lassen (2005) study,
where the probability of each possible alloca-
tion of districts to the decentralization con-
dition is unknown, in the Brady et al. (1995)
study we ignore the probability that each
individual will receive a given endowment of
money, education, language ability, and free
time. There is, however, a fundamental dif-
ference. In Lassen (2005), the allocation of
districts to the decentralization intervention
was the result of a governmental policy. This
policy was decided by a third party, not by
the districts themselves (though we cannot
rule out that districts had some influence in
determining their own assignment). More-
over, the external mechanism that decided the
allocation of districts has a time stamp and is
verifiable.

These two features apply to natural
experiments generally and translate into
two concrete advantages over traditional
observational studies. The time stamp allows
the researcher to identify a pretreatment
period and distinguish it from the post-
treatment period. And the verifiability of
the external mechanism can, in some cases,
justify an uncounfoundedness assumption. I
discuss both issues below.

6.5.1 Pretreatment Period and Falsification

In a natural experiment, the assignment
mechanism depends on an external factor.
As argued at length above, knowledge of

this external factor is not sufficient to
fully know the probability distribution
of the assignment. However, because the
occurrence of the external factor is a
necessary condition for the treatment to be
assigned, the time period when the external
event occurs serves as a natural delimiter.
Unlike traditional observational studies,
natural experiments allow the researcher to
establish objectively the time period when
treatment assignment occurs, because he or
she can record when the external intervention
was initiated.

This treatment assignment time stamp is
crucial for falsification purposes. Once the
researcher collects information about the
moment when the treatment was given to
the units, the periods before and after the
treatment assignment are easily established –
the period before the treatment is commonly
referred to as the pretreatment period. An
important falsification analysis is available
if researchers can collect information on
a set of covariates X measured during the
pretreatment period. By virtue of having
been measured in this period, these variables
will be determined before the treatment is
assigned, and thus the effect of treatment
on them is zero by construction. Thus,
the variables X can be used to implement
a falsification analysis that is common in
the analysis of randomized experiments:
by analyzing whether the treatment has in
fact no effect on the covariates, researchers
can offer empirical evidence regarding the
comparability of treated and control groups.

As in randomized experiments, the
usefulness of this so-called “covariate
balance” analysis depends on the type of
variables that are included in X. The most
convincing falsification analysis will be one
where these variables are strongly correlated
with both the outcome and the factors that
affect the propensity to receive the externally
assigned treatment.11 On this aspect, natural

11 For example, in the Lassen (2005) study, one could
analyze the share of the population that is college
educated, which is known to correlate with voter
turnout (the outcome of interest), and is also corre-
lated with socioeconomic indicators such as income
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experiments do not differ much from RCEs
and RTPEs.

However, there is one crucial differ-
ence. The correct implementation of a
covariate falsification analysis depends on
the assignment mechanism, which in a
natural experiment is unknown. When the
assignment mechanism is equiprobable, the
distribution of X is expected to be the same
when the entire control group is compared
to the entire treatment group, and thus
the falsification test can be implemented
with unadjusted covariate balance tests
that compare all treated units versus all
control units.12 However, if the treatment
assignment probabilities are different for
different subgroup of units, the proper
implementation of a covariate balance test
requires us to weight or stratify the analysis
based on these probabilities. In natural
experiments, however, these probabilities are
unknown, so such adjustment is unavailable.

This suggests that an unadjusted covariate
balance test is a useful tool to establish the
plausibility of the equiprobable assignment
assumption. For implementation, researchers
assume that the assignment mechanism
is equiprobable and test the implication
that the unadjusted distribution of X is
equal in the treatment and control groups.
If the hypothesis that the treated and
control covariate distributions are equal is
rejected, then the assumption of equiprobable
assignment is unsupported by the data. This
is an important first step toward gaining
a deeper understanding of the assignment
mechanism.

The implementation of this falsification
analysis is straightforward in the Lassen
(2005) study. The decentralization interven-
tion occurred in 1995 when the Copenhagen
Municipality Structural Commission selected
the districts that would be decentralized.
Thus, all district-level variables collected

and poverty that might make decentralization (the
treatment) more or less desirable.

12 An equiprobable assignment is one in which every
unit has the same probability of receiving treatment,
but not necessarily one in which this probability is
equal to 50%. As long as this probability is constant
for all units, the distribution of covariates in the
treatment and control group will be the same.

before 1995 are pretreatment and can be
used in a falsification analysis. This could
include census counts, economic indicators,
etc. In contrast, in the Brady et al. (1995),
the pretreatment period is impossible to
identify with certainty because it is unclear
when the treatments of time, money, and
civic skills are in fact assigned. For example,
if an individual reports high levels of civic
skills as measured by a vocabulary test, what
exactly is the period before these skills were
developed? We know that language skills
are susceptible to stimulation from an early
age, and toddlers and even infants who are
exposed to rich language environments have
stronger language skills. We cannot rule
out that people with high vocabulary skills
have been exposed to this treatment since
early childhood. A similar argument can be
applied to the money and time treatments.
This implies that a pretreatment period is
unavailable and all covariates are in fact post-
treatment covariates. Therefore, there are no
covariates available with which to implement
a falsification analysis.

6.5.2 Verifiability of Externality and
Unconfoundedness

When the empirical evidence shows that
the distribution of relevant predetermined
covariates differs between the treatment
and the control group, the assumption of
equiprobable assignment is implausible.
This means that the data do not support
the assumption that all units were assigned
to the treatment condition with the same
probability. Without additional knowledge,
it is not possible to identify causal treatment
effects in a design-based fashion.

However, the most convincing natural
experiments might offer a reasonable justifi-
cation for the assumption that the assignment
is unconfounded given some observable
predetermined covariates. The credibility
of this justification is based directly on the
externality of the treatment assignment
that characterizes natural experiments. As
I have defined it, a natural experiment is a
setting in which the treatment assignment
mechanism is known to be probabilistic
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by virtue of it depending on an external
factor. In some natural experiments, the
researcher has enough information about the
variables on which the external intervention
depended. In these cases, the researcher
might credibly assume that, after these
variables are conditioned on, the probability
of treatment assignment is not a function of
the units’ potential outcomes. The credibility
of such an assumption should be judged on a
case-by-case basis.

For example, in the Lassen (2005) study,
the exact functional form of the assignment
mechanism is unknown, but a qualitative
investigation of the decision-making process
revealed that the decision of which districts
to decentralize was based on the districts’
populations and levels of socioeconomic
development, with the explicit goal of
ensuring that the decentralized districts were
as diverse as the total population of districts
in terms of these covariates. This feature of
the assignment, which is directly verifiable
with qualitative information issued by the
Copenhagen Municipal Commission, can be
used as the basis for the unconfoundedness
assumption that the probability of decentral-
ization is unrelated to the districts’ potential
outcomes after conditioning on population
and socioeconomic development.

Note an important difference between
the unconfoundedness assumption and the
equiprobable assignment assumption: the
latter is empirically testable, but the former
is not. Because covariate balance is an
implication of an equiprobable assignment
mechanism,we can use covariate balance tests
to falsify the assumption that the assignment
mechanism is equiprobable. However, in
the absence of additional assumptions, the
unconfoundedness assumption is funda-
mentally untestable. This means that a
justification for it has to rely more heavily
on the qualitative information about the
assignment mechanism and stands on weaker
evidentiary ground.

The assumption of unconfounded assign-
ment is always strong, but on this respect
natural experiments have an advantage
over traditional observational studies: the
dependence of the assignment mechanism

on external factors is verifiable. In the
most convincing natural experiments,
researchers are able to verify that the process
that governed the treatment assignment
depended on external factors, and prior
scientific knowledge coupled with qualitative
and/or qualitative data suggest that treatment
assignment should be unrelated to potential
outcomes conditional on those factors. If the
researcher is able to collect information on
those same factors and condition on them in
the analysis, then the usual tools of program
evaluation based on unconfoundedness –
parametric adjustment models, propensity
score analyses, matching estimators, etc. –
are available for analysis.

Thus, in a convincing natural experiment,
the researcher uses the available information
on the external assignment mechanism as
a plausible basis to invoke an unconfound-
edness assumption. This is unavailable in
a traditional observational study, where
there is usually no objective basis to claim
that unconfoundedness holds for any set
of covariates, given that we fundamentally
ignore how (and when) the treatment was
assigned. For example, in the Brady et al.
(1995) study, what covariates should we
condition on before we can assume that
people with high levels of money, time, and
civic resources are comparable to people who
have low levels of those resources? Brady et al.
condition on citizenship status because they
reasonably assume that it is a “prerequisite
for voting and might affect other kinds of
participation as well.” But, even putting
aside the concerns about establishing the
pretreatment period, we can imagine many
other factors such as geographic location,
number of children, parents’ education,
etc., that may affect both the propensity
to participate in politics and the amount of
time, money, and resources available to an
individual. There is no objective information
to guide the choice of the conditioning set.

The decision to participate in politics,
since it is made privately and is entirely
under the control of each individual, is
less transparent to the researcher than
the decision to decentralize districts in
Copenhagen. Unlike the Copenhagen
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Municipal Commissions, which published
a report on the decentralization process,
individual citizens do not write reports
detailing the process by which they arrived
at the decision to participate in politics. This
greater transparency about the assignment
mechanism, and the separation between
the units receiving the treatment and
those assigning it, can imbue some natural
experiments with a stronger research design
and more objective basis to invoke the
necessary identification assumptions.

My choice of can in the prior sentence is
deliberate and should not be replaced by do. I
do not mean to claim that the “worst” natural
experiment is always preferable to the “best”
traditional observational study. Some natural
experiments blatantly violate the equiproba-
ble assignment assumption and provide a very
weak basis for assuming unconfoundedness.
Some traditional observational studies are
carefully conducted and genuinely contribute
to our scientific knowledge. My claims about
a credibility hierarchy are made in the ceteris
paribus spirit articulated by Imbens (2010) –
in a given study, it is preferable to have a
verifiable conditioning set and a clear time
stamp attached to the treatment assignment,
and no researcher would willingly give up
such information.

6.6 Recommendations for Practice

The preceding discussion suggests some
general recommendations for empirical
researchers who wish to estimate and
interpret causal effects based on natural
experiments.

6.6.1 Is the Assignment Probabilistic?

The first step is to establish whether the
assumption of a probabilistic assignment
is met for the universe of units that the
researcher wishes to analyze. As I have
defined it, a crucial feature of a natural
experiment is that its assignment mechanism
is probabilistic by virtue of an external event
that is outside of the units’ direct control.
The researcher should establish whether

it is in fact the case that all units to be
included in the study had a probability of
receiving treatment strictly between zero and
one. If some units were certain to either be
affected or not affected by the intervention,
they should be excluded from the study,
as the usual causal parameters will not be
identifiable. If some units are excluded, the
researcher should redefine the parameter of
interest and clarify in the analysis that the
reported effects are estimating the effect
of the intervention only for units whose
probability of being treated was neither zero
nor one. The researcher should carefully
characterize this new parameter.

The caveat is that the assumption of
probabilistic treatment assignment is not
directly verifiable or testable, because
untreated units could be untreated either
because their ex ante treatment assignment
probability is zero or because it is positive but
the realization of the assignment is the con-
trol condition. For this reason, researchers
should use prior scientific knowledge and/or
qualitative and quantitative information
regarding the external process that assigned
the treatment to justify the probabilistic
assignment assumption.

6.6.2 Is the Assignment Equiprobable?

The second step is to assume that the
assignment mechanism is equiprobable and
to test the implication that the distribution
of relevant pretreatment covariates is equal
in the treatment and control groups. This
falsification analysis starts by selecting a
group of relevant pretreatment covariates X
and testing the null hypothesis that themeans
and other features of the distribution of these
covariates are the same in the treated and
control groups. If the hypothesis of covariate
balance is not rejected, the analysis can
proceed under the equiprobable assignment
assumption using standard tools from the
analysis of randomized experiments (e.g.,
Athey and Imbens 2017; Gerber and Green
2012; Imbens and Rubin 2015) – with the
caveat that in natural experiments, unlike
in RCEs or RTPEs, this assumption is not
known to be true and its credibility might be
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disputed by other analyses. If the hypothesis
of covariate balance is rejected, then the
assumption of equiprobable assignment
is unsupported by the data. Of course,
researchers should ensure that their tests
have enough statistical power to avoid
mistakenly interpreting the failure to reject a
false null hypothesis of covariate balance as
supportive of the equiprobable assignment
assumption.

6.6.3 Is the Assignment Unconfounded?

An assignment mechanism that is not
equiprobable could still be unconfounded.
When the data do not support the assumption
of equiprobable assignment, researchers
should explore whether it is plausible to
assume that there exists a covariate-based
adjustment that renders the treated and
control groups comparable. In this second
stage of falsification, researchers can use
the external assignment mechanism of the
natural experiment to offer a plausible basis
to adopt an unconfoundedness assumption.
This justification should be based on
objective and verifiable information about
the treatment assignment mechanism that
identifies a set of covariates that were
explicitly used in the assignment, as in the
Lassen study. Assuming that the researcher
has access to these covariates, the analysis
can proceed under the assumption of
unconfoundedness given these covariates
using standard estimation and inference
methods from the unconfoundedness toolkit
(e.g., Abadie and Cattaneo 2018; Imbens and
Rubin 2015) – again, with the caveat that
this assumption is not known to be true and
might be disputed by later analyses.

6.6.4 Is the Natural Experiment of
Substantive Interest?

In most natural experiments, the treatment
that is assigned is not exactly the treatment
that a researcher would have assigned if he
or she had been in charge of the execution
of the study. This leads to very important
and often difficult issues of interpretation.
Even if all of the required identification

assumptions are satisfied, the treatment effect
that is identifiable by the design may not be
the effect of scientific interest.

Sekhon and Titiunik (2012) illustrate this
point with a redistricting natural experiment.
Several researchers have used the periodic
redrawing of legislative district boundaries in
the US to study the incumbency advantage,
comparing the vote share received by the
same incumbent legislator in areas that
are new to his or her district versus areas
that have been part of the district for a
long time. Even if precincts were randomly
moved to new districts according to a known
probability distribution, this assignment
would never achieve comparability between
new and old voter areas in terms of their
prior history (e.g., party or race of prior
incumbent), because new voters are coming
from a different incumbent by construction.
In terms of the prior discussion, this occurs
because the probability of old voters being
selected as new voters is zero, and thus the
overall assignment is not probabilistic for
this population. The natural experiment
externally introduces variation in the voters
that an incumbent receives in his or her
district. Whether this variation is useful
for studying the incumbency advantage of
interest to scholars of American politics is a
separate matter. Such issues of interpretation
should be at the forefront of any analysis
based on natural experiments.

6.7 Conclusion

The literature has offered several definitions
of a natural experiment, not necessarily
consistent with one another. I sought to
partly resolve the ambiguity by going back to
the definition of a RCE, and contrasting the
canonical natural experiment to it. As I have
defined it, a natural experiment is a study in
which the treatment assignment mechanism
is neither designed nor implemented by the
researcher, is unknown and unknowable to
the researcher, and is probabilistic by means
of an external event or intervention that is
outside of the control of the units who are
the subjects of the intervention.
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In order to arrive at this definition, I have
emphasized several conceptual distinctions.
A central conclusion is that a RCE’s defining
feature is not that the treatment assignment
is random, in the sense of being a random
variable with some distribution, because this
would imply that all interventions, programs,
and individual decisions ever taken are
randomized experiments. That a citizen’s
decision to vote is a random variable does
not imply that a comparison of voters and
nonvoters is a randomized experiment. The
key is not that the treatment must have a
distribution (all random variables do), but
rather that the experimenter must know
what this distribution is. The power of a
RCE (and a RTPE) is therefore not only
in the randomization itself, but also in the
knowledge and properties of the assignment
distribution that the randomization implies.
In a RCE, the unconfoundedness assumption
guaranteed by the physical randomization
device is as crucial as the ex ante unpre-
dictability of each individual’s treatment
assignment. In contrast, natural experiments
retain the unpredictability, but discard
knowledge of the assignment mechanism
and the unconfoundedness guarantees.

Because natural experiments have,
by definition, a treatment assignment
mechanism that is unknowable to the
researcher, they rank – everything else equal –
unambiguously below RCEs in terms of
credibility and reproducibility. Nonetheless,
natural experiments offer two important
advantages over traditional observational
studies. First, by defining the moment
when the intervention of interest occurs,
they clearly demark a pretreatment period,
which is essential to falsify the assumption
of equiprobable assignment and also to
condition on covariates in a valid way.
Second, in cases where the equiprobable
assignment assumption does not hold, the
best natural experiments offer a plausible
and verifiable justification for an uncon-
foundedness assumption. Both the time
stamp that delimits pre- and post-treatment
periods and the objective justification for
the unconfoundedness assumption are often
lacking in traditional observational studies.
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