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             T
he access to “big data” has opened up new possi-

bilities for research. Among other things, we now 

can collect a person’s geographic location, genetic 

information, blog posts, product preferences, and 

social media interactions, giving scientists access 

to vast amounts of information that was previously unavail-

able. Understandably, this has caused great excitement, and 

some scholars believe that big data holds the key to many of 

the scientific answers that so far have eluded us. I believe that 

only part of this optimism is justified. Regarding our ability 

to make causal inferences, the relevant question is whether 

big data has the potential to uncover causal relationships 

that could not be discovered with “small” data. I argue that 

only rarely is the amount of data to which we have access the 

binding constraint in our ability to make causal inferences. 

Instead, the bottleneck often is the lack of a solid research 

design and a credible theory, both of which are essential to 

develop, test, and accumulate causal explanations. This does 

not mean that big data has no benefits. The access to more and 

new information leads to richer descriptive analysis, opens up 

new possibilities for exploratory analysis and hypothesis gen-

eration, and increases the number of theoretical implications 

that may be empirically tested. 

 In the view of causation that I adopt, units have diff erent 

potential outcomes that would occur for each possible level of 

a given treatment, but we are able to see only one of those 

outcomes—that which is realized when the unit chooses a 

specific level of the treatment. The fundamental problem of 

causal inference is that for every unit, we fail to observe the 

value that the outcome would have taken if the chosen level 

of the treatment had been diff erent (Holland  1986 ). Therefore, 

the search for causal inferences is a search for assumptions 

under which we can infer the values of these unobserved coun-

terfactual outcomes from observed data.  1   The question at the 

center of my argument is whether access to big data funda-

mentally increases the likelihood that those assumptions 

will hold. 

 The term “big data” may be ascribed various meanings. 

In their contribution to this symposium, Patty and Penn 

understand big data as a highly multidimensional and com-

plex body of information that is not inherently ordered and 

that necessarily must go through a process of data reduction 

before it can be analyzed. In contrast, in the definitions of big 

data that I consider, “big data” refers to a rectangular array 

of information with n rows and p columns. Thus, my notion 

of big data as a rectangle presupposes that the reduction 

discussed by Patty and Penn already has occurred and that 

appropriate decisions have been made to transform complex, 

non-ordered data into variables that take particular values for 

each observation—decisions that, as Patty and Penn point out 

in this issue, can be crucially consequential. 

 Another view of big data, and one that Ashworth, Berry, 

and Bueno de Mesquita adopt in their contribution to this 

symposium, refers to the statistical and computational 

tools of machine learning that typically are used to “mine” 

or extract structured patterns of information from large 

datasets.  2   Although this is a valuable definition for many 

purposes, I do not engage it directly because my argument 

centers on whether the access to vast amounts of new infor-

mation per se will solve the most fundamental obstacles to 

causal inference, and I consider this question to be largely 

independent of the available techniques to detect and char-

acterize empirical regularities in big datasets.  3   

 Instead, my focus is on two other interpretations of big 

data: big data “as large n” and big data “as large p.” The 

former refers to data sources with several observations—that 

is, records collected for hundreds of thousands or millions of 

units of analysis. In this interpretation, big data represents a 

situation in which the number of observations, n, is extremely 

large relative to the number of variables available in the data-

set. In contrast, the latter interpretation refers to the availa-

bility of a large amount of information per observation—that 

is, data sources in which the number of variables, p, is very 

large relative to n. In the following discussion, I argue that 

big data is no “silver bullet” for causal inference under either 

of these two interpretations.  

 BIG DATA AS LARGE N 

 Access to big data in the sense of large n rarely translates into 

a fundamentally improved ability to make causal inferences. 

Larger n is helpful for increasing the precision of estimates 

or the power of hypothesis tests, and it can allow for a wider 

range of estimation methods that would be unreliable with 

few observations (e.g., nonparametric methods). However, 

large n does not automatically remove or even alleviate what 

is often the most challenging step of empirical research: our 

ability to estimate consistently the parameters of interest and 

to make valid and robust statistical inferences. 

 An estimator that is inconsistent remains inconsistent 

regardless of how large the number of observations used. 

Indeed, the definition of an inconsistent estimator is precisely 

that even after we allow the sample size to go to infinity, the 

estimator is unlikely to be near the true value of the parame-

ter. For example, no increase in the number of observations, 
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no matter how large, will cause the omitted variable bias in 

a mis-specified linear regression model to disappear. This is a 

rather obvious but important point. 

 Perhaps a more subtle point is that even when consistent 

estimators or pivotal test statistics are available, increasing 

the sample size will not necessarily lead to more accurate 

approximations if we consider all relevant data-generating 

processes. For example, given a distribution generating the 

data, confidence intervals will have correct asymptotic 

coverage for a causal parameter if the probability that these 

intervals contain the true parameter is arbitrarily close to 

a predetermined confidence level when n is very large. How-

ever, this does not necessarily imply that there will be an n 

large enough to guarantee approximately correct coverage for 

all possible distributions that could have generated the data. 

In other words, even if fixing a data-generating process we 

can obtain confidence intervals with approximately correct 

coverage for some large n 0 , there is no guarantee that n 0  

will be large enough to ensure an equally accurate or bet-

ter approximation for a different potential data-generating 

process. 

 This is the well-known distinction between pointwise and 

uniform convergence for large n. With only pointwise conver-

gence approximations, increasing the sample size does not 

guarantee that we get closer to the true value of a parameter 

or the true coverage of confidence intervals in any meaningful 

practical sense. Consider, for example, post-model-selection 

inference. As discussed by Leeb and Pötscher ( 2005 ), with 

consistent model-selection procedures, the probability of 

selecting the true model generating the data tends to 1 as 

the sample size increases. However, this asymptotic result is 

pointwise, not uniform, which implies that for any sample 

size—regardless of how large—the probability of selecting the 

true model will tend to zero when some of the parameters 

in the true model are suffi  ciently small. Thus, although it is 

possible to construct consistent estimators for the finite sam-

ple distribution of the post-model-selection estimator, these 

estimators are of very limited practical use because the lack 

of uniformity implies that this finite-sample distribution can 

be arbitrarily far from its pointwise asymptotic limit for any 

sample size. 

    BIG DATA AS LARGE P 

 A related but diff erent understanding of big data centers on 

the larger universe of models that researchers can explore. 

The increasing availability of information has led to datasets 

that, instead of (or in addition to) having a large number of 

observations (n), have a very large number of variables (p) for 

each observation. In this interpretation, “big data” refers 

to datasets with large p, which in turn may refer to cases in 

which p is either smaller than n but very large relative to it or 

strictly larger than n. 

 The fundamental obstacle that we encounter when attempt-

ing to make causal inferences is that our units of analysis 

(e.g., voters, politicians, or businesses) typically choose the 

courses of action that they expect will be most beneficial. As a 

result, units that do or do not take certain actions may be very 

diff erent from one another in potentially unknown but sys-

tematic ways. This problem, sometimes referred to as “selec-

tion bias,” is particularly pervasive in the social sciences due 

to the strategic nature of most social interactions. 

 As argued previously, big data as large n per se cannot 

solve the problem of self-selection. However, big data as large 

p brings more information. A large p dataset may contain 

information on a person’s preferred newspapers, political reg-

istration, recent travel history, fitness routine, social media 

contacts, campaign contributions, business transactions, and 

blog entries. Such a dataset surely will provide a more com-

plete picture of the individual than a typical “small” dataset 

with only demographic and socioeconomic information. It 

is tempting to imagine that such massive quantities of new 

information will dramatically improve our ability to make 

causal inferences by allowing us to “control for” a very large 

set of variables—so large that the systematic preexisting dif-

ferences among units will all but disappear. 

 Consider the following example. We want to understand 

whether the high rates of reelection of incumbent members 

of the US House of Representatives arise because they are 

the highest quality candidates or because, once in offi  ce, they 

have access to resources that scare off  strong challengers and 

increase their popularity among voters. To establish which 

explanation is true, we may seek a measure of incumbency 

advantage net of intrinsic incumbent quality. A possible strat-

egy is to measure the vote share of incumbent politicians and 

compare it to that of non-incumbent candidates of the same 

party. However, what if the incumbent anticipated a defeat 

and this anticipation prompted his retirement? And what if 

the anticipation of a tough battle makes it difficult for the 

party to recruit a strong non-incumbent candidate? The result 

might be that in some districts in which no incumbent is run-

ning, the party’s candidate may be weaker and the electoral 

circumstances more adverse than in incumbent-held seats—

which likely would overestimate the true advantage enjoyed 

by incumbents. 

 This is when big data as large p might help. It may be 

implausible that candidate quality and retirement decisions 

are exogenous conditional on only party and previous vote 

share, but what if we had access to big data on politicians and 

   The increasing availability of information has led to datasets that, instead of 
(or in addition to) having a large number of observations (n), have a very large 
number of variables (p) for each observation. 
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could condition on all previous political speeches, public text 

messages, press reports, election forecasts, social media interac-

tions, and travel history? Perhaps then we would capture enough 

information so that after conditioning on it our inferences would 

be valid. This idea is promising indeed because it implies that 

big data as large p eventually will allow us to solve automatically 

the fundamental problem of causal inference by “controlling 

for” massive amounts of information using sophisticated algo-

rithms, computers, and statistical assumptions—all of which 

likely would be necessary to address the complications of large 

p inferences (see the following discussion). 

 Could an automatic and sophisticated “kitchen-sink” 

approach eliminate the need to rely on theories and research 

designs? I suspect not because there is one major catch. 

When the goal is causal inference rather than prediction or 

description, inference methods for large p datasets rely on 

the crucial assumption that the large set of variables included 

in the model is approximately equal to or, at least, includes 

all of the variables needed to make exogeneity plausible. 

In other words, given a large set of baseline variables, high-

dimensional methods can be used to perform dimension 

reduction or to adjust for the potential biases induced by 

including many regressors. However, these methods will work 

only under the assumption that the original set of candidate 

variables includes all variables necessary for exogeneity to 

hold and excludes all variables aff ected by the treatment. 

 And how do we know if our large p dataset contains all 

relevant controls and excludes all posttreatment variables? 

We need either a theory about how the treatment aff ects the 

outcome of interest and the other variables in the model or 

a research design that justifies focusing on a particular subset 

of variables—and, if we want to maximize our chances of accu-

mulating knowledge, we need both. 

  Moreover, even if we could identify a potentially large 

subset of our original large p dataset that includes those 

variables that make exogeneity possible and excludes those 

aff ected by the treatment (a big if ), crucial restrictions and 

additional assumptions are needed to avoid the inferential 

challenges that otherwise would arise. For example, it is well 

known that when p is smaller than n but very large relative to 

it, the large number of incidental parameters poses consid-

erable complications. Increasing the number of fixed-eff ects 

in nonlinear panel data models may lead to inconsistent 

parameter estimates (see, e.g., Hahn and Newey  2004 ), and 

even classical heteroskedasticity robust standard errors may 

be inconsistent in linear panel models (Stock and Watson 

 2008 ). Similar issues may arise in cross-sectional linear 

models with many regressors (see, e.g., Cattaneo, Jansson, 

and Newey  2012 ; Koenker  1988 ) and instrumental variable 

models with many instruments (see, e.g., Andrews and Stock 

 2007 ). These issues may be addressed by imposing appropri-

ate rate restrictions or bias corrections, but the important 

point is that increasing p leads to inferential challenges that 

cannot be ignored. 

 In addition, recent advances in econometrics have focused 

on developing uniformly valid methods for causal inference 

with high-dimensional datasets in which p is allowed to be 

much larger than n. These approaches begin with an extremely 

large number of variables, perform model selection to choose 

only those that are needed, and develop conditions under 

which valid inferences can be made after the model-selection 

step (see, e.g., Belloni et al.  2013 ;  2014 ; Farrell  2014 ).  4   However, 

these methods crucially require some type of data-reduction 

structure, such as sparsity—that is, the assumption that only 

some of the included variables appear in the true model. 

In other words, although these methods allow for a massive 

(i.e., larger than n) number of variables in the conditioning set, 

valid causal inferences cannot be obtained unless we impose 

restrictions on the way those variables aff ect the outcome of 

interest—restrictions that can be justified only by providing a 

strong research design or a strong theory. 

 Therefore, the need for theory and research design with 

big data as large p is not fundamentally altered, even if large 

p methods provide more flexibility by allowing researchers to 

use a very large number of variables. Causal inferences based 

on large p datasets still require the assumption that we have 

not omitted important variables and have not included post-

treatment variables, the same assumption that is required when 

datasets are “small.” 

 Returning to our example, is the collection of all previous 

political speeches, public text messages, press reports, social 

media interactions, and international travel records suffi  cient 

to capture a politician’s inherent quality? What about the 

way he kisses babies at rallies, how she pronounces vowels, 

his ability to connect emotionally with voters, and her intel-

ligence? The list could be expanded endlessly, and it is likely 

that many items on that list would be inherently unobserva-

ble. Without a theory and a research design, it is not possible 

to know when to stop adding to the list.   

 BIG DATA FOR DESCRIPTION, EXPLORATION, AND 

HYPOTHESIS GENERATION 

 That big data is no substitute for theory and research design 

does not mean that it has no benefits. At the very least, the 

ability to collect and analyze big datasets creates numerous 

possibilities for description, exploration, and hypothesis gen-

eration, all of which are crucial elements of scientific inquiry. 

 At the most basic level, big data allows us to systemat-

ically and quantitatively analyze phenomena that were pre-

viously unavailable. This leads to an increasing availability 

of “dependent” and “independent” variables that, together 

with modern machine learning tools, enhances our abil-

ity to provide a richer description of phenomena of interest 

and allows us to uncover empirical regularities previously 

   How do we know if our large p dataset contains all relevant controls and excludes all 
posttreatment variables? 
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unobservable. Because the ability to engage in systematic 

descriptive analysis often is a first step in developing scientific 

theories and explanations, this is one significant way in which 

access to big data can contribute to scientific progress. 

 A related benefit of big data is that as more phenomena 

become quantifiable, the range of implications of scientific 

theories that can be tested empirically is expanded signifi-

cantly. For example, until recently, it was diffi  cult to test sys-

tematically those theories that predict shifts in spoken or 

written political discourse. However, the increasing ability 

to convert text into data expands the number of predictions 

that can be tested (see, e.g., Grimmer  2013 ). This represents 

another contribution of big data to scientific progress. 

 Moreover, the availability of big data—in particular, big 

data as large p—allows researchers to engage in systematic, 

large-scale statistical inference (i.e., the simultaneous explo-

ration of hundreds and even thousands of hypotheses) with 

the goal of detecting a small subset that holds the most prom-

ise for a specifi c scientific explanation (see, e.g., Efron  2010 ). 

The promise of this type of large-scale exploratory analysis 

is the ability to accelerate the pace of hypothesis generation. 

For example, in genetics, researchers may test hundreds or 

thousands of genes to detect a few that are most likely associ-

ated with a particular disease. After this small set of genes has 

been detected, eff orts then can be focused on developing the-

ories and designing specific clinical trials to develop a deeper 

scientific understanding of the causes of the disease. In the 

absence of large-scale exploratory analysis, each hypothesis 

would be studied with the same amount of detail, which may 

result in a prohibitively costly and slow process. 

  Finally, for these benefits of big data to materialize, we must 

ensure that the quality of big data satisfies certain standards, 

particularly in those cases in which it is created for direct busi-

ness purposes. Many of the commercial sources of big data 

(e.g., Google, Twitter, and Facebook) are appealing in that they 

record detailed information about individuals’ social interac-

tions, preferences, consumption decisions, and so forth—all of 

which can be valuable for scientific purposes. However, as noted 

by Lazer et al. ( 2014 ), a major challenge in using commercial 

data is that the companies that produce it constantly make 

modifications to their data-collection algorithms in order to 

increase profits and support their business model. As a con-

sequence, commercial data often are endogenously aff ected 

by a company’s business decisions rather than exogenously 

determined—which compromises their validity as a source of 

information. For example, the number of social media connec-

tions per individual might be used as a proxy for a person’s social 

network. However, if these connections are aff ected by the com-

pany’s algorithms to suggest new contacts and the algorithms 

evolve over time in ways unknown to the scientific community, 

this type of data might prove highly unreliable for scientific 

purposes. These potential challenges must be considered as 

commercial data becomes more common in scientific research. 

 To summarize, in combination with theory and research 

design (and precautions about commercial sources), big data can 

enhance and deepen our ability to explore and develop scientific 

explanations. However, the availability of big data per se does 

not constitute a structural breakthrough in our ability to make 

causal inferences. This is not because big data is limited but 

rather because the accumulation of scientific knowledge ulti-

mately requires a theory of how and why phenomena occur as 

well as a research design to make valid causal inferences about 

the theory’s empirical implications. There are no algorithmic or 

automatic shortcuts to scientific discovery. In fact, the need for 

critical thinking will be stronger the more we become inundated 

with ever-larger amounts of new information.     
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