
Two-tailed Test 

A two-tailed test is a statistical procedure used to compare the null hypothesis that 

a population parameter is equal to a particular value against the alternative hypothesis 

that the population parameter is different from this value. Evidence regarding the null 

hypothesis is obtained from a test statistic, and the test is said to be “two-tailed” because 

its alternative hypothesis does not specify whether the parameter is greater than or less 

than the value specified by the null hypothesis. Hence, both large and small values of the 

test statistic, this is, values on both tails of its distribution, provide evidence against the 

null hypothesis. This type of test is relevant for situations in which researchers wish to 

test a null hypothesis but they do not have a prior belief about the direction of the 

alternative, a situation which is likely to happen in practice. The term “two-tailed test” is 

usually reserved for the particular case of one-dimensional hypotheses, even though it 

may be used more generally. 

Two-sided hypothesis testing 

In hypothesis testing, the hypotheses are always statements about a population parameter 

which partitions the set of possible values that the parameters may take. For example, 

letting μ  be the parameter for which the hypothesis test is performed, a null hypothesis, 

referred to as 0H , may be defined as  

00 : μμ =H  



and its two-sided alternative hypothesis, referred to as 1H , is defined as 

01 : μμ ≠H  

The alternative hypothesis 1H  does not make a statement about whether μ  is greater 

than 0μ or less than 0μ , which makes this a two-sided test. The difference between a one-

sided test and a two-sided test lies solely in the specification of the alternative hypothesis. 

As a consequence, while a one-sided test specifies in its alternative hypothesis that the 

parameter is either greater than or less than the value specified in the null hypothesis 

( 1H is either 0μμ >  or 0μμ < ), in a two-sided test the direction of the alternative 

hypothesis is left unspecified. 

Evidence for or against the null hypothesis is obtained by means of a test statistic, which 

is a function of the available data. Just as in the one-sided case, in a two-sided hypothesis 

test the decision of whether to reject the null hypothesis 0H  is based on a test statistic 

( ) ( )NXXXWXW ,,, 21 K=  which is a function of a (random) sample NXXX ,,, 21 K  of 

size N from the population under study. The test specifies a rejection rule that indicates 

in what situations 0H  should be rejected. In a two-sided test, rejection occurs for both 

large and small values of ( )XW , while in a one-sided test rejection occurs either for large 

or small values of the test statistic (but not both) as dictated by the alternative hypothesis. 

Formally, a two-sided rejection rule is defined as: 

Reject 0H             if ( ) 1cXW <  or ( ) 2cXW >  



Do not reject 0H  if ( ) 21 cXWc ≤≤  

In order to establish the values of the critical values 1c and 2c , it is common 

practice to follow the Neyman-Pearson approach and first choose a significance level α . 

The significance level α  of the test is an upper bound to the probability of mistakenly 

rejecting 0H when 0H is true (probability of type I error). Once the significance level has 

been fixed, the constants 1c and 2c  are chosen so that the probability of rejecting 

0H when 0H is true is (at most) equal to the significance level. In other words, 1c and 2c  

are chosen so that 

( )( ) ( )( ) α≤>+< 21 00
PrPr cXWcXW HH  

where ( )zH0
Pr  indicates the probability of z computed assuming that the null hypothesis 

0H  is true.  

This still may leave the constants 1c and 2c  undetermined, since there may be 

infinitely many ways in which the sum of these two terms can be made equal to α . Thus, 

the researcher must usually make a decision regarding how to divide the probability 

α between the two terms, this is, between the two tails of the distribution of ( )XW  under 

0H . If the researcher has no prior information regarding the direction of the alternative, 

then it seems appropriate to divide this total probability symmetrically between the two 

tails. This is, the condition ( )( ) ( )( )21 PrPr
0

cXWcXWH >=<  is imposed and therefore 



( )( ) ( )( )
2

PrPr 21 00

α
≤>=< cXWcXW HH  

If the researcher has prior information regarding the population parameter that may affect 

the alternative hypothesis, then this total probability may be divided asymmetrically 

between the two tails. However, an asymmetric allocation of α between both tails is not 

used very often, since in cases when information regarding the direction of the effect 

under study is available, researchers usually choose a one-sided alternative. 

The two-sided rejection rule is easier to construct when the distribution of ( )XW  under 

the null hypothesis is symmetric, since in this case the critical values 1c and 2c  are equal 

in absolute value. In this case there is only one unknown constant that needs to be 

established based on the underlying distribution of the test statistic. 

Comparison with one-sided test 

The difference in the specification of the alternative hypothesis between a one-tailed test 

and a two-tailed test has important conceptual consequences. As illustrated in the 

example below, using a two-sided test is generally conservative in the sense that it is 

more difficult to reject the null hypothesis with this test than with the correct one-sided 

test for a given significance level. This occurs because a more extreme value of the test 

statistic will be necessary to reject the null hypothesis at the same α significance level 

with a two-sided test than with a one-sided test, due to the fact that in the former the total 

probability of rejecting 0H when it is true (type I error) is split between both tails of the 



distribution of ( )XW .  

For example, when the null hypothesis 0H  is tested using both an α -level one-sided test 

to the right and an α -level two-sided test, and the distribution of the test statistic is 

continuous, the critical value *c  of the one-sided test is defined by ( )( ) α=> *
0

Pr cXWH , 

and the critical values **
lc  and **

uc  of the two-sided test are defined by 

( )( ) ( )( ) α=>+< ****
00

PrPr uHlH cXWcXW . It is easy to see that in this case ***
ucc <  and 

there exist values of ( )XW  such that ( ) ***
ucXWc << . When this happens, 0H  will be 

rejected with the one-sided test but will not be rejected with the two-sided test.  

This point is further illustrated in Figure 1, where the top panel shows the significance 

level of a one-sided hypothesis test for the particular case of a normal distribution of the 

test statistic under 0H , and the bottom panel shows a two-sided test with the same 

significance level and the same test statistic, where the significance level has been split 

symmetrically across both tails. As can be seen in the figure, for all values of ( )XW  

between 1.64 and 1.96, the null hypothesis is rejected with a one-sided test but is not 

rejected with a two-sided test. The two-sided test requires a larger value of ( )XW  to 

reject 0H  than the one-sided test shown in the figure, because the probability of type I 

error on the upper tail is forced to be smaller in the two-sided test ( 2/α ) than in the one-

sided test (α ). This illustrates how a two-sided test may require a more surprising value 

of ( )XW  to reject the null hypothesis than a one-sided test, which makes the two-sided 

test more conservative. 



[Two-tailed_Test_Figure_1 about here] 

A numerical example 

Imagine a situation in which a researcher is interested in establishing whether two 

competing math text books have the effect of increasing the mathematical skills of 

elementary school students. In particular, the researcher is interested in whether assigning 

the practice exercises of the books as homework has en effect on math test scores. For 

this purpose, N  students are randomly assigned to two different groups, referred to as 

group A and group B, of size AN  and BN , respectively. Students in group A are assigned 

the exercises in book A as homework over the course of a month, and students in group B 

are assigned the exercises in book B as homework during the same period of time. 

Students solve the exercises individually and are not allowed to interact with one another. 

The researcher is interested in establishing whether children who are assigned the 

exercises in one book perform better in a math exam at the end of the experiment than 

children assigned the exercises in the other book, but based on the available information, 

the researcher has no prior belief as to which book is more effective than the other. In this 

case, a two-sided hypothesis test is appropriate, since the alternative hypothesis should be 

left unspecified. 

Students are given a math exam at the beginning and at the end of the experiment, and the 

change in test scores is recorded for each student. Assuming that the difference in test 

scores is approximately normally distributed with means Aμ  and Bμ  in groups A and B, 

respectively, and equal variance, the mean differential effect of the two types of exercises 



can be analyzed using a two-sided difference-in-means test to determine whether 

BA μμ −  is different from zero. Formally, the null and alternative hypotheses are 

formulated as follows: 

:0H 0=− BA μμ  

:1H 0≠− BA μμ  

The researcher chooses to test 0H  using the test-statistic 
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1   where AX  and BX  are the 

sample means of the change in test scores in groups A and B, respectively, and iAX  and 

iBX  are the changes in test scores for student i  in each of the groups. W  is the t -statistic 

for the difference in means when variances are unknown but equal and has a t  

distribution under 0H with 2−+ BA NN  degrees of freedom. However, since the number 

of degrees of freedom in this example is large ( 1332 =−+ BA NN ), the distribution of W 

can be approximated by a normal.  

Assuming there are 70 students in  group A and 65 students in group B, and that 



0.1286=AX , 0.0461=BX , ( )∑
=

=−
AN

i
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2 7.8429 , ( )∑
=
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i
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2 2.8615 ,  the 

value of the test statistic is 1.6866=W . In order to decide whether to reject the null 

hypothesis that both types of exercises have the same effect at increasing the math skills 

of students as measured by the improvement in their test scores, the significance level of 

the test must be established. If the significance level is set is set at 5% and this mass is 

equally distributed on both tails, the rejection rule is  

Reject 0H             if ( ) 1.96>XW   

Do not reject 0H  if ( ) 1.96≤XW  

since 1.96 and -1.96 are, respectively, the 2.5% and 97.5% quantiles of the normal 

distribution. Given that ( ) 1.961.6866 <=XW , 0H  cannot be rejected and the researcher 

cannot reject the hypothesis that exercises in book A are equally effective at improving 

math skills than exercises in book B.  

In this example, had the researcher performed a one-sided test with the alternative 

hypothesis that 0>− BA μμ , the rejection rule would have been  

Reject 0H             if ( ) 1.64>XW   
Do not reject 0H  if ( ) 1.64≤XW  

and the null hypothesis would have been rejected in favor of the alternative hypothesis 

that the type of exercises in book A are more effective at increasing the mathematical 

skills of students than the type of exercises in book B. Thus, using a two-sided test the 

null hypothesis cannot be rejected, even when a one-sided test (to the right) would have 



rejected the null hypothesis.  

Rocío Titiunik 

See also: Hypothesis Testing;  p-value; Significance Level; Significance 

(Statistical Significance); Statistic; Type I Error; Type II Error; Test. 

Further readings 

Box, G. E. P., Hunter, J. S., & Hunter, W. G. (2005). Statistics for experimenters. Design, 

innovation and discovery. Hoboken, NJ: Wiley-Interscience.  

Casella, G., & Berger, R. L. (2002). Statistical inference. Pacific Grove, CA: Duxbury 

Press. 

Hogg, R. V. & Craig, A. T. (1995). Introduction to mathematical statistics. Upper Saddle 

River, NJ: Prentice Hall. 

Lehmann, E. L. (1986). Testing statistical hypotheses. New York, NY: Springer. 

Lehmann, E. L. (1998). Nonparametrics. Statistical methods based on ranks. Upper 

Saddle River, NJ: Prentice Hall. 

Mittelhammer, R. C. (1995). Mathematical statistics for economics and business. New 

York, NY: Springer. 

Stone, C. J. (1996). A course in probability and statistics. Belmont, CA: Duxbury Press. 



W~N(0,1)

One−sided versus two−sided hypothesis test under normality

−4 −1.96 −1 0 1 1.96 4

H0 ::     µµ == µµ0

H1 ::     µµ ≠≠ µµ0

αα 2αα 2

−4 −1.96 −1 0 1 1.64 4

H0 ::     µµ == µµ0

H1 ::     µµ >> µµ0

αα

Reject H0

Do not reject H0

αα = PH0
((W >> 1.64))

= PH0
((W >> 1.96))




