
Methods for Policy Analysis Burt S. Barnow,
Editor

COMPARING INFERENCE APPROACHES FOR RD DESIGNS: A REEXAMINATION OF THE
EFFECT OF HEAD START ON CHILD MORTALITY

Matias D. Cattaneo, Rocı́o Titiunik, and Gonzalo Vazquez-Bare

Abstract

The regression discontinuity (RD) design is a popular quasi-experimental design for
causal inference and policy evaluation. The most common inference approaches in RD
designs employ “flexible” parametric and nonparametric local polynomial methods,
which rely on extrapolation and large-sample approximations of conditional expec-
tations using observations somewhat near the cutoff that determines treatment as-
signment. An alternative inference approach employs the idea of local randomization,
where the very few units closest to the cutoff are regarded as randomly assigned to
treatment and finite-sample exact inference methods are used. In this paper, we con-
trast these approaches empirically by re-analyzing the influential findings of Ludwig
and Miller (2007), who studied the effect of Head Start assistance on child mortality
employing parametric RD methods. We first review methods based on approximations
of conditional expectations, which are relatively well developed in the literature, and
then present new methods based on randomization inference. In particular, we extend
the local randomization framework to allow for parametric adjustments of the poten-
tial outcomes; our extended framework substantially relaxes strong assumptions in
prior literature and better resembles other RD inference methods. We compare all these
methods formally, focusing on both estimands and inference properties. In addition,
we develop new approaches for randomization-based sensitivity analysis specifically
tailored to RD designs. Applying all these methods to the Head Start data, we find that
the original RD treatment effect reported in the literature is quite stable and robust, an
empirical finding that enhances the credibility of the original result. All the empirical
methods we discuss are readily available in general purpose software in R and Stata;
we also provide the dataset and software code needed to replicate all our results.
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INTRODUCTION

Every year, federal governments throughout the world spend large fractions of their
budgets on programs aimed at assisting low-income populations in obtaining health
care, housing, food, and education. In the United States, the total federal spending
on the ten largest means-tested programs and tax credits for low-income households
rose from 1 percent to 4 percent of the GDP between 1972 and 2012, recently totaling
nearly 600 billion dollars (CBO, 2013). Given the amount of resources devoted to
such programs, and the importance of their goals, evaluating whether they achieve
their intended policy objectives is crucial. The most compelling method of program
evaluation is one that randomly assigns units to receive (or not receive) the program
benefits. However, in the context of means-tested social programs, experimental
designs are rarely feasible unless the number of applicants exceeds the number of
available program slots; otherwise, the creation of an experimental control group
would have the unethical consequence of leaving some program slots unfilled. Thus,
the use of non-experimental research designs to evaluate social programs is often
unavoidable.

This article focuses on the regression discontinuity (RD) design, a non-
experimental strategy that allows researchers to obtain a valid “quasi-experimental”
control group when the treatment of interest is not randomized—including situa-
tions when the neediest applicants receive the program first. This design is based
on two main assumptions. The first is that each program applicant receives a score,
and the program is given to all applicants whose score exceeds a known cutoff
(the treatment group), and withheld from all applicants whose score is lower than
the cutoff (the control group). This feature is common to all RD designs with per-
fect compliance and is easily verifiable, since it refers to an observable treatment
assignment mechanism that is usually set ex ante by the institution granting the
program. The second assumption is that units in the control and treatment groups
near the cutoff are valid counterfactuals of each other, ruling out program par-
ticipants’ ability to precisely manipulate their score value and hence their treat-
ment status. This assumption is sometimes described as ruling out the “endogenous
sorting” of units around the cutoff. For early reviews and general methodologi-
cal discussions see, for example, Cook (2008), Imbens and Lemieux (2008), Lee
and Lemieux (2010), and Wing and Cook (2013). See also Cattaneo and Escan-
ciano (2017) for an edited volume with very recent overviews, discussions, and
references.

We discuss two approaches to the analysis of RD designs, each of which adopts a
different version of the non-sorting assumption. In the first framework, valid coun-
terfactuals follow from the assumption that the conditional expectations of potential
outcomes given the score are continuous at the cutoff, ensuring that the characteris-
tics of treated participants with scores very near the cutoff are not abruptly different
from the characteristics of control participants whose scores are also close to the
cutoff. This continuity assumption leads to nonparametric identification of a local
average treatment effect (ATE) at the cutoff, and justifies the use of (nonparamet-
ric) local polynomial techniques for estimation and inference (Hahn, Todd, & van
der Klaauw, 2001). In the second framework, the validity of the treatment-control
comparisons follows from assuming that the treatment is as-if randomly assigned
in a small window around the cutoff. This local randomization assumption, which
is stronger than the continuity assumption invoked by the first framework, justifies
the use of methods from the analysis of experiments literature for estimation and in-
ference (Cattaneo, Frandsen, & Titiunik, 2015). This second approach is motivated
by the influential work of Lee (2008), who discussed the idea of RD designs as local
randomized experiments (see also the original paper of Thistlethwaite & Campbell,
1960).
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In many empirical applications of RD designs, researchers often combine both
frameworks in an informal way—for example, using “flexible” parametric polyno-
mial methods to estimate treatment effects but using local randomization methods
to provide empirical evidence in favor of the design and heuristic causal inter-
pretations. Our main goal in this article is to formalize and discuss the differences
between these methods, both methodologically and empirically, employing as a case
study the influential findings of Ludwig and Miller (2007), who studied the effect
of Head Start assistance on child mortality employing parametric RD methods. For
very recent related work see also Pihl (2016). We compare and contrast the two
RD methodological approaches, in each case discussing formally how to define and
interpret the parameter of interest and how to perform estimation and inference.

In the continuity-based framework, we discuss the two most common estimation
and inference methods: (i) global polynomial and flexible parametric inference, and
(ii) nonparametric local polynomial inference. We advise against the first set of
methods, since they are parametric in nature, and de facto ignore the impact of
over-fitting higher-order polynomials for boundary estimation (global approach) or
parametric misspecification bias and neighborhood selection (flexible parametric
approach). We recommend the second set of methods because—instead of imposing
a parametric model—they rely on nonparametric approximations of the unknown
regression functions on either side of the cutoff, and employ nonparametric large-
sample inference techniques for estimation and inference that take into account the
error in the approximation (i.e., misspecification error or smoothing bias). In this
framework, the population parameter of interest might not be regarded as causal
but is, nonetheless, policy relevant and very useful (though local in nature without
additional assumptions).

In the local randomization framework, where treatment assignment is assumed
to be as-if randomly assigned in a small window around the cutoff, we propose to
employ exact randomization-based inference methods, first formally developed in
the RD setting by Cattaneo et al. (2015). The reason is that the window where this
local randomization assumption is plausible is likely to be small and thus contain
few observations, which may render large-sample approximation methods invalid.
Randomization-based methods avoid this problem because they lead to inferences
that are finite-sample correct.1 We make two novel methodological contributions
to the local randomization framework. First, we extend the local randomization
RD framework to develop a formal model of transformed outcomes based on flex-
ible parametric adjustments of the potential outcomes; this allows the potential
outcomes to depend on the running variable in a flexible way and therefore sub-
stantially relaxes strong assumptions previously employed in the literature (e.g.,
that the average response of the outcome near the cutoff is constant). In particular,
our novel methodology gives a formal justification for parametric polynomial fit-
ting near the cutoff before employing randomization inference techniques. Second,
we propose new randomization-based sensitivity methods specifically developed for
RD designs. Both contributions are new to the literature, building, and improving
on the randomization-inference framework proposed in Cattaneo et al. (2015).

We illustrate our discussion with an analysis of Head Start, a U.S. federal program
that provides education, health, nutritional, and social services for children from
birth to age five, including center-based preschool services for three-year-olds and
four-year-olds (Head Start Report, 2010). In particular, we re-examine the influential
article by Ludwig and Miller (2007), who employed an RD design to study the

1 For textbook reviews of randomization-based methods see Rosenbaum (2002b, 2010) and Imbens and
Rubin (2015). Recent applications of randomization inference methods to the social sciences include
Imbens and Rosenbaum (2005), Ho and Imai (2006), Bowers, Fredrickson, and Panagopoulos (2013),
and Keele, Titiunik, and Zubizarreta (2015).
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effects of Head Start on child mortality, relying on a discontinuity on access to
program funds that occurred in 1965 when the program was first implemented.
Specifically, in order to ensure that applications from the poorest communities
would be represented in a nationwide grant competition for the program’s funds,
the federal government provided assistance to the 300 poorest counties in the United
States to write and submit applications for Head Start funding. This led to increased
Head Start participation and funding rates in these counties, creating a discontinuity
in program participation at the 300th poorest county that can be used to estimate
an RD treatment effect of the program. Using flexible parametric methods, Ludwig
and Miller (2007) found that access to increased Head Start funding decreased
1973 to 1983 county-level mortality rates of children of age five to nine due to
causes affected by Head Start’s health services component. The mortality reduction
reported is large, from approximately 3.2 to 1.9 deaths per 100,000.

Our re-examination of the Head Start data shows that this reduction in child
mortality is robust to different RD assumptions and estimation strategies. Adopt-
ing a continuity-based framework, the global and flexible parametric approaches
yield a point estimate of about −2.5 deaths per 100,000 (statistically significant
at 5 percent level), and the robust local nonparametric approach leads to a very
similar conclusion, with an RD treatment effect of about −2.3 deaths per 100,000
(statistically significant at 5 percent level). Adopting a local randomization frame-
work leads to similar conclusions: we estimate treatment effects of −2.3 and −2.5
deaths per 100,000, we reject the (sharp) null hypothesis that the treatment has no
effect for any unit with randomization-based p-values below 0.01, and we show that
these findings are robust to window selection, parametric misspecification, local
interference, and the presence of unobserved confounders assessed with our newly
developed sensitivity analysis methods. All the methods are implemented in pub-
licly available R and Stata software packages (see Calonico et al., 2017; Calonico,
Cattaneo, & Titiunik, 2014a, 2015b; Cattaneo, Titiunik, & Vazquez-Bare, 2016).
Accompanying this article, we also provide data and complete replication codes
in both R and Stata. Latest software, data, and codes are publicly available at
https://sites.google.com/site/rdpackages/.

The rest of this article is organized as follows. The next section introduces the
basic RD setup and presents the Head Start data. The following sections offer a dis-
cussion of the continuity-based framework, employing global and local parametric
techniques to estimate Head Start effects; introduce the RD local randomization
framework and present our new methodological developments, including flexible
outcome adjustments and novel sensitivity methods, and apply them to the Head
Start data; collect all our empirical findings and provide a methodological (and sub-
stantive) discussion; and offer comprehensive recommendations for practice and
a conclusion. The Supporting Information Appendix reports additional method-
ological discussions and empirical results, and presents an extension of our new
randomization-based methods to the case of “fuzzy” RD designs where compliance
is imperfect.2 See Ganong and Jäger (2016) for permutation-based inference in
“kink” RD designs (Card et al., 2015; Chiang & Sasaki, 2016).

BASIC RD SETUP: HEAD START PROGRAM

We start by presenting the main features of the RD design that are common to
both the continuity-based and the local randomization framework. We focus on the
so-called sharp RD design, where treatment compliance is perfect or the researcher

2 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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focuses on the intention-to-treat parameter—as occurs in the Head Start empirical
application.

In the sharp RD design, treatment assignment is a deterministic function of the
running variable or score: each unit with observed running variable Ri below the
known threshold r̄ is assigned to the control group (Di = 0) and each unit with
Ri ≥ r̄ is assigned to the treatment group (Di = 1). Thus, Di = 1(Ri ≥ r̄) for each
unit i in the sample, with 1(·) denoting the indicator function. The running variable
Ri is assumed to be random throughout, as it determines treatment assignment
for each unit in the sample. In the case study of Head Start (HS), the sample
consists of U.S. counties, i = 1, 2, . . . , n with n = 2, 804, and the score is a county-
level poverty index constructed in 1965 by the federal government based on 1960
census information, with support Ri ∈ [15.2085, 93.0717]. The cutoff is r̄ = 59.1984
and Di = 1(Ri ≥ 59.1984), which was chosen so that the number of treated counties
would be exactly 300.

We employ the potential outcomes framework to analyze all approaches to RD
analysis in a unified way. In this framework, each unit is assumed to have one
potential or underlying outcome for all or some subset of all possible treatment
assignments, and the treatment effects are defined in terms of these underlying
outcomes, which are distinguished from the observed outcomes. Depending on the
approach to inference considered, these potential outcomes may be either random
or fixed quantities. Below, we will use yi(·) to denote fixed potential outcomes and
Yi(·) to denote random potential outcomes for each unit i in the sample (the actual
evaluation variables depend on the framework, as we discuss below). When the
potential outcomes are modeled as random, they are seen as a sample from some
underlying (super) population; this model is particularly useful for some frequentist
large-sample arguments. When the potential outcomes are modeled as fixed quanti-
ties of the units in the sample, then the operating assumption is that the sample is the
population of interest, and inference is based on the randomization mechanism and
is valid only for those observed units. The latter assumption is most common in the
analysis of experiments and related randomization inference frameworks (Imbens
& Rubin, 2015; Rosenbaum, 2002b, 2010).

Graphical Presentation

One of the main advantages of the RD design is related to the ease with which it
can be visualized and assessed intuitively. We begin by presenting the RD design
graphically using the Head Start data. Figure 1 plots the county-level death rates
of children ages five to nine as a function of the county’s poverty index, using the
data first used by Ludwig and Miller (2007) to study the impact of Head Start on
child mortality during the 1973 to 1983 period. Figure 1a plots the raw mortality
counts, while Figure 1b plots binned means of child mortality with evenly-spaced
bins chosen optimally to mimic the variability of the outcome variable (Calonico,
Cattaneo, & Titiunik, 2015a). The solid lines are fourth-order global polynomial fits,
and the vertical line indicates the value of the poverty index cutoff that determined
technical assistance to apply for Head Start funding. The smoothed plot in Figure 1b
illustrates a downward jump right at the poverty index cutoff, with mortality being
lower immediately to the right of the cutoff in counties that qualified to receive
assistance and higher immediately to the left in counties where no assistance was
offered and Head Start participation was much lower.

Figure 1b already hints heuristically to a potential RD treatment effect of Head
Start on child mortality for counties having a 1960 poverty index of about r̄ =
59.1984. In the rest of the paper, we formalize this heuristic finding, discussing the
different features of population parameters and inference methods considered.

Journal of Policy Analysis and Management DOI: 10.1002/pam
Published on behalf of the Association for Public Policy Analysis and Management



648 / Methods for Policy Analysis

0
5

10
15

20

20 40

(a) Scatter Plot, Raw Data, N − = 2, 455, N+ = 290

(b) RD Plot, ES, and MV, J− = 37, J+ = 38

60 80

0
2

4
6

8

20 40 60 80

Notes: (i) In panel (a), N− and N+ denote the sample sizes for control and treatment units, respectively;
(ii) in panel (b) bins are evenly spaced (ES) and their total number (J−, J+) chosen to mimic variance
(MV); (iii) solid blue lines depict fourth-order polynomial fits using control and treated units separately;
and (iv) dots depict raw data points in panel (a) and sample average of outcome variable within each bin
in panel (b).

Figure 1. Scatter and RD Plot. Head Start Data.

Falsification Tests

The key idea underlying the RD design is that because units (counties in the Head
Start case) do not have precise control over their running variable, their charac-
teristics (both observable and unobservable) should not change abruptly at the
cutoff, leading to comparable control and treatment groups. In particular, lack of
systematic sorting around the cutoff will be compatible with a continuous den-
sity of the running variable near the cutoff and continuous conditional expectation
functions of potential outcomes near the cutoff. A key issue in any empirical study
employing RD methods is to assess the validity of the design by providing evidence
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in favor of these assumptions. We consider the three most common approaches for
the falsification of RD designs.

1. Continuity away from cutoff. This approach seeks to check graphically—and
later formally if needed—whether the outcome variables exhibit discontinuities
over the support of the running variable at places other than the actual cutoff
r̄ . The approach is based on repeated sampling assumptions and studies the
behavior of the conditional expectations E[Yi(0)|Ri] and E[Yi(1)|Ri] over the
range of the running variable Ri . See Calonico et al. (2015a) for further details
and discussion. In addition, see Cerulli et al. (2017) for a related approach,
building on Dong and Lewbel (2015), which looks at the local (to the cutoff)
sensitivity of the treatment effect estimate.

2. Running variable manipulation. This approach was originally proposed by
McCrary (2008) and builds on the idea that units in the sample should not
be able to sort precisely around the cutoff (i.e., no self-selection into control
or treatment status). Thus, in the absence of precise manipulation of their
running variable, placement of units just below (control group) and just above
(treatment group) should be as-if random near the RD cutoff r̄ , and the number
of treated and control units in a neighborhood of the cutoff should be approxi-
mately similar. This idea leads to falsification methods based on comparing the
number or “density” of treated and control units near the cutoff. See Frandsen
(2017) for a related approach when the running variable takes discrete values
(which is not the case in the Head Start application), and Jales and Yu (2017)
for a review of related approaches exploiting a discontinuity in density.

3. Placebo treatment effects. This approach was formalized by Lee (2008) and
builds on the idea that pre-intervention covariates and post-treatment out-
comes on which the treatment is known to have no effect (also called “placebo”
outcomes) should exhibit a zero RD treatment effect. This method is imple-
mented by conducting inference on RD treatment effects using both types of
variables as outcomes at the true cutoff value r̄ and, sometimes, at artificial
cutoff points on the support of the running variable. The latter gives a for-
mal test for detecting potential discontinuities over the support of the running
variable, as discussed above.

We perform falsification tests to check the validity of the RD design employing
all three approaches. We present the main results here, but relegate details to the
Supporting Information Appendix to conserve space.3 To check for continuity away
from the cutoff on the outcome variable, we construct RD plots using two differ-
ent approximations to the regression functions, following the recommendations in
Calonico et al. (2015a). These figures are shown in the Supporting Information
Appendix. Employing the Head Start data, we found no empirical evidence of dis-
continuities away from the real RD cutoff r̄ = 59.1984.

The first falsification approach described above is graphical and global in nature,
as it looks at the behavior of the data over the full support of the running variable.
In contrast, the second falsification approach focuses on the observations near the
cutoff and employs only the distribution of the running variable—that is, it does not
employ outcomes or covariates. The idea of manipulation of the running variable
is quite important in RD designs; in the Head Start application, it is highly unlikely
ex ante because assistance was offered to counties in 1965 based on their poverty
index Ri constructed using the 1960 census data—it is unlikely that in 1960 counties
could have anticipated that a policy would be based on whether the poverty index

3 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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Table 1. Falsification test based on the running variable Ri.

Binomial tests

h N−
W N+

W p-value

0.3 9 10 1.000
0.5 18 16 0.864
0.7 24 22 0.883
0.9 32 27 0.603
1.1 43 33 0.302
1.3 51 38 0.203

Notes: (i) Cutoff is r̄ = 59.1984 and W = [r̄ − h, r̄ + h]denotes the window around the cutoff used for
each choice of bandwidth; (ii) binomial test p-values are computed using exact binomial distribution
with probability q = 1/2.

was exactly r̄ = 59.1984 five years later. Nonetheless, it is interesting to illustrate
how to assess the plausibility of the RD design using this second method.

We implement the running variable manipulation falsification approach in two
distinct ways. First, we employ a binomial test aimed to formally check whether
the number of observations in the control and treatment groups near the cutoff
is surprisingly different from the number that would be expected in a random
sample of Bernoulli trials with a pre-specified probability q ∈ (0, 1). This first im-
plementation is based on the idea that if units within a window or neighborhood
W = [r̄ − h, r̄ + h] around the cutoff were randomly assigned to treatment with
probability q, then the number of effective control units N−

W = ∑n
i=1 1(r̄ − h ≤ Ri < r̄)

and effective treatment units N+
W = ∑n

i=1 1(r̄ ≤ Ri ≤ r̄ + h) should follow a binomial
distribution, a fact that can be tested empirically. Here h controls the width of the
neighborhood W around the RD cutoff—this tuning parameter plays a crucial role
in the RD literature, as we discuss throughout this paper. To implement this idea,
we first choose a neighborhood or window W near the cutoff r̄ where this test is car-
ried out, and a probability of treatment assignment q. In practice, in the absence of
additional information, q = 1/2 is the most natural choice. Table 1 shows the results
of the binomial test for a few small windows near the cutoff—in the Supporting In-
formation Appendix we present a more complete analysis.4 The empirical findings
are consistent with what would be observed under a simple Bernoulli assignment
mechanism in small windows near the cutoff.

An alternative implementation of this falsification method is applicable to RD
designs where the running variable is a continuous random variable—as it occurs in
our Head Start application—and is based on the idea of continuity of the (Lebesgue)
density of Ri near the cutoff. This idea was originally proposed by McCrary (2008),
and is implemented by conducting a formal nonparametric hypothesis test of con-
tinuity of the probability density function of Ri at r̄ . We implement this falsification
test employing the recent results in Cattaneo, Jansson, and Ma (2016a, 2016b),
which rely on local polynomial distribution regression methods, bias-correction
techniques, and robust distributional approximations to conduct the hypothesis
test. For brevity, we refer the reader to the latter references for further details. The
results are presented in Table 2, where we fail to reject the null hypothesis that the
density of the running variable is continuous at the cutoff and thus obtain addi-
tional empirical evidence in favor of the validity of the RD design in the Head Start
empirical application.

4 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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Table 2. Falsification test based on the running variable Ri.

Density tests

h− h+ N−
W N+

W p-value

Method
Unrestricted, 2-h 10.151 9.213 351 221 0.788
Unrestricted, 1-h 9.213 9.213 316 221 0.607
Restricted (1-h) 13.544 13.544 482 255 0.655

Notes: (i) Cutoff is r̄ = 59.1984 and W = [r̄ − h, r̄ + h] denotes the symmetric window around the cutoff
used for each choice of bandwidth; (ii) Density test p-values are computed using Gaussian distributional
approximation to bias-corrected local-linear polynomial estimator with triangular kernel and robust stan-
dard errors; (iii) column “Method” reports unrestricted inference with two distinct estimated bandwidths
(“U, 2-h”), unrestricted inference with one common estimated bandwidth (“U, 1-h”), and restricted infer-
ence with one common estimated bandwidth (“R, 1-h”). See Cattaneo, Jansson, and Ma (2016a, 2016b)
for methodological and implementation details.

We postpone the discussion of the third falsification method based on placebo
treatment effects to the following sections, as this method requires estimation and
inference techniques for RD analysis. We turn to discussion of these techniques
below.

RD BASED ON CONTINUITY AT THE CUTOFF

The first approach to RD analysis that we consider is one that assumes that the
conditional regression functions of the potential outcomes given the score are con-
tinuous at the cutoff. In other words, this continuity-based framework assumes
that, at the cutoff point where the treatment status changes abruptly from control to
treated, the average underlying features of the population only change smoothly, not
abruptly. The abrupt change in treatment status induced by the sharp RD treatment
assignment combined with this continuity condition allows researchers to recover
the ATE at the cutoff—a quantity defined in terms of potential outcomes—from
observed outcomes. This nonparametric (infinite population) identification result
leads naturally to estimation and inference approaches that attempt to estimate the
distance between two different and unknown conditional regression functions at
the cutoff, using polynomials as approximation devices. Thus, this approach relies
on nonparametric large-sample extrapolation methods.

The continuity-based framework regards the potential outcomes as random vari-
ables and the n observations as a random sample from a (super) population, an idea
that we summarize in the following assumption:

Assumption 1. (Super population). For i = 1, 2, . . . , n: (Yi(0), Yi(1), Ri)′ is a random
sample from a large (super) population.

Moreover, it is common in this framework to also assume that each unit’s potential
outcome is only affected by that unit’s treatment status—generalizations of which
we discuss in detail below. This leads to each unit having exactly two potential
outcomes, Yi(1) and Yi(0), where Yi(1) denotes the potential outcome when unit i
receives treatment and Yi(0) denotes the potential outcome when unit i receives
control. Thus, the observed outcome is

Yi = Yi (0) · (1 − Di) + Yi (1) · Di =
{

Yi (0) i f Di = 0
Yi (1) i f Di = 1 .
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In our application, Yi(0) represents the child mortality rate in county i in the ab-
sence of Head Start assistance, while Yi(1) captures the same county’s child mortality
rate if the county receives Head Start assistance.

The main parameter of interest in this framework is the (super) population average
response to treatment at the cutoff r̄ :

τSRD = E[Yi (1) − Yi (0) |Ri = r̄].

Whether this is a causal parameter is a subject of some debate. On the one hand,
this parameter is a function of the unit-level causal effect that captures the potential
outcome difference between treated and untreated states, Yi(1) − Yi(0), and in that
sense may be regarded as causal. On the other hand, under the “no causation without
manipulation” interpretation (Holland, 1986), and given that Ri is a continuous
random variable, the probability of observing units at the cutoff is zero and thus this
parameter cannot be directly conceived as an experiment that exogenously assigns
treatment to a given population of units. This ambiguity does not occur in the local
randomization framework we discuss below, where the parameter of interest is not
the ATE at a point but within an interval, and the treatment assignment is directly
conceived as an exogenous manipulation. Nevertheless, the parameter τSRD is often
useful to test substantive theories in social, behavioral and biomedical sciences, as
well as to develop policy recommendations.

We now discuss parametric and nonparametric identification of τSRD, and sum-
marize the most common asymptotic inference methods based on those identifica-
tion results. In essence, once identification is ensured, estimation and inference for
τSRD involves modeling parametrically or approximating nonparametrically the two
conditional regression functions E[Yi(1)|Ri = r] and E[Yi(0)|Ri = r] at (or near) the
cutoff r̄ . These inference methods rely on particular large-sample Gaussian approx-
imations to conduct estimation and inference. Typical regularity conditions include
continuity of the running variable, and existence and boundedness of higher-order
moments. We do not discuss this kind of technical regularity conditions in this
paper, which may be found elsewhere in the literature (e.g., Calonico et al., 2016;
Calonico, Cattaneo, & Titiunik, 2014b).

Parametric Estimation Methods

Ludwig and Miller (2007) employed parametric methods to estimate the ATE at
the cutoff of Head Start assistance on child mortality. We classify as “flexible”
parametric methods those that focus on observations in a neighborhood of the
cutoff but (i) do not account for misspecification bias in estimation and inference
procedures, and (ii) do not select this neighborhood using data-driven procedures
based on nonparametric approximations.

The key assumption underlying flexible parametric identification, estimation, and
inference is the following:

Assumption 2. (Parametric functions). For some polynomial degree p = 0, 1, 2, . . .,

E[Yi (0) |Ri = r] = β−
0 + rβ−

1 + · · · + r pβ−
p ,

E[Yi (1) |Ri = r] = β+
0 + rβ+

1 + · · · + r pβ+
p

for all r ∈ [r̄ − h, r̄ + h], where h is a positive, known bandwidth parameter.

This assumption models the conditional expectations of the potential outcomes as
parametric polynomial functions of the running variable, possibly locally to the
cutoff. The choice of neighborhood [r̄ − h, r̄ + h] is controlled by the choice of
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bandwidth h. In this approach, however, Assumption 2 is taken as correct and
thus no attention is paid to misspecification bias, and the choice of bandwidth h is
typically ad hoc. The main estimation approach under Assumptions 1 and 2 (and
regularity conditions) is parametric least-squares for a choice of polynomial order
and neighborhood around the cutoff. We describe this procedure below.

Procedure 1 (Parametric Approach)

1. Select a neighborhood W = [r̄ − h, r̄ + h], where h is the bandwidth, and the
polynomial degree p. The bandwidth h is chosen by the researcher in an ad hoc
way. In general, p is small (p = 0 or p = 1) when h is small, and large (p = 4
or p = 5) when h is large.

2. Drop all observations outside the neighborhood W, that is, keep only observa-
tions satisfying r̄ − h ≤ Ri ≤ r̄ + h.

3. Using least-squares regression, estimate the coefficients in the full treatment-
interaction model.

Yi = α + τ Di + β1 R̄i + . . . + βp R̄p
i + ζ1 R̄i Di + . . . + ζp R̄p

i Di + εi,

where R̄i = Ri − r̄ is the re-centered running variable. The least-squares es-
timate of τ in the above regression model, denoted by τ̂SRD, estimates τSRD.
Heteroskedasticity-robust (or cluster-robust) standard errors for τ̂SRD are com-
puted using standard least-squares algebra and are routinely calculated by
statistical packages.

When the outcome of interest Yi is replaced by some other pre-intervention re-
gressors or unaffected post-treatment outcomes, the estimator τ̂SRD and associated
inference procedures can be used to conduct the third falsification test described
in the previous section, a “placebo test” that checks that a null effect is recovered
for a variable that is, by construction, unaffected by the treatment. We present such
results for our application in the Supporting Information Appendix.5

In empirical implementations, either h and p are small (local approximation) or
h and p are large (global approximation), and both parameters are chosen ex ante
by the researcher. Table III in Ludwig and Miller (2007, pp. 180–181) reports the
RD treatment effects for the Head Start application using the flexible parametric
approach in Procedure 1. Using the raw data, we re-estimate τ̂SRD and reproduce
their results—see Table 3 for completeness and future comparability. While the point
estimators are exactly equal, the standard errors differ slightly due to a change in
degrees-of-freedom correction.

The results in Table 3 include local (p = 1) and global (p = 4) flexible para-
metric estimation for several neighborhoods around the cutoff: [r̄ − 9, r̄ + 9] and
[r̄ − 18, r̄ + 18] for p = 1 and [r̄ − 20, r̄ + 20] and the full data for p = 4. The
latter global approach is not recommended in practice to estimate RD treatment
effects because it (i) generates counterintuitive weighting schemes (Gelman &
Imbens, 2014) and (ii) has erratic behavior near the cutoff (Runge’s phenomenon
in approximation theory). Global approximations are better suited to provide an
overall, smooth graphical representation of RD design and falsification testing, as
described in the previous section (see Calonico et al., 2015a, for more details). We
include them here only for comparison and discussion.

The first panel in Table 3 shows the results for the main outcome in Ludwig and
Miller (2007), mortality rates per 100,000 for children ages five to nine from causes

5 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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Table 3. Flexible parametric RD methods.

Linear model (p = 1) Quartic model (p = 4)

h = 9 h = 18 h = 20 Full sample

Ages 5–9, HS-targeted causes, post HS
RD treatment effect –1.895 –1.198 –2.751 –3.065
Parametric 95% CI [–3.828, 0.038] [–2.498, 0.101] [–5.490, –0.012] [–5.189, –0.940]
Parametric p-value 0.055 0.071 0.049 0.005
N−

W | N+
W 309 | 215 671 | 283 770 | 289 2489 | 294

Falsification tests, parametric p-values
Ages 5–9, injuries,

post-HS
0.953 0.318 0.933 0.887

Ages 5–9, HS-targeted,
pre-HS

0.109 0.549 0.35 0.011

Notes: (i) All estimates are constructed using linear ordinary least-squares estimators with
heteroskedasticity-robust standard errors; (ii) N−

W = ∑n
i=1 1(r̄ − h ≤ Ri < r̄), N+

W = ∑n
i=1 1(r̄ ≤ Ri

≤ r̄ + h) .

affected by Head Start services. The linear specification yields a reduction of 1.895
points within ± 9 poverty index points around the cutoff, which then drops to 1.198
when the larger ± 18 neighborhood is considered. Both results are significant at 10
percent, with p-values of 0.055 and 0.071, respectively. The general direction of the
effect is observed with a quartic polynomial, although the point estimates become
somewhat larger in absolute value. As a placebo test, the bottom panel shows the
p-values from RD effect estimation for two variables that should not have been
affected by Head Start: mortality of children ages five to nine from injuries in the
post-treatment period, and mortality of children ages five to nine from mortality
causes targeted by Head Start (hereafter, HS-targeted causes) in the period before
the program was adopted. With the only exception of the fully global specification
(which is highly unreliable), the effects are statistically indistinguishable from zero
at 10 percent level for both variables. Further falsification results are available in
the Supporting Information Appendix.6

Nonparametric Local Polynomial Estimation Methods

An alternative to imposing a parametric form on the unknown regression functions
is to leave these functions unspecified and employ modern nonparametric local
polynomial methods for estimation and inference. Relative to the flexible para-
metric methods, a nonparametric local-polynomial approach has three distinctive
features: (i) the bandwidth h is chosen in a data-driven way based on nonparametric
approximations, (ii) the RD point estimator is asymptotically mean-squared-error
(MSE) optimal, and (iii) inference procedures explicitly incorporate the effects of
local parametric misspecification (i.e., nonparametric smoothing bias). For techni-
cal discussion on these points see Hahn et al. (2001), Imbens and Kalyanaraman
(2012), Calonico et al. (2014b), and references therein.

The following assumption captures the essence of nonparametric identification,
estimation, and inference methods for the RD treatment effect τSRD.

6 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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Assumption 3. (Nonparametric functions). E[Yi(0)|Ri = r] and E[Yi(1)|Ri = r] are
(at least) three times continuously differentiable at the RD cutoff r = r̄ .

This assumption implies continuity of E[Yi(0)|Ri = r] and E[Yi(1)|Ri = r] at r = r̄ ,
the minimal requirement for nonparametric identification of τSRD. It also gives
enough regularity to enable nonparametric estimation and inference of the RD
treatment effect. This assumption is strictly weaker than Assumption 2, because the
flexible parametric functional form imposed in Assumption 2 implies the smooth-
ness of the conditional expectations imposed in Assumption 3.

From an implementation point of view, treatment effect estimation in the non-
parametric approach is implemented in the same way as in the flexible parametric
approach, the only difference being that the nonparametric approach often includes
kernel weights that increase the relative weight of observations close to the cutoff.
However, from a conceptual point of view, the nonparametric approach is funda-
mentally different from the flexible parametric approach when it comes to point
estimation and inference. In the nonparametric approach, the only assumption
is continuity (or differentiability) of the conditional expectations (Assumption 3);
therefore, the least-squares estimation in Procedure 1 is misspecified by construc-
tion because, in general, Assumption 3 does not guarantee that the conditional
expectation is exactly equal to the polynomial chosen for estimation. For this rea-
son, the bandwidth h that determines the observations used via the neighborhood,
W = [r̄ − h, r̄ + h], must be chosen objectively to account for the presence of mis-
specification bias in estimation of and inference for the RD treatment effect. In
this approach, h and p are always chosen to be small: local-constant (p = 0) or
local-linear (p = 1), the latter being the preferred option in practice.

For point estimation, the most common approach is to choose the bandwidth h
so that the resulting RD point estimator is approximately MSE-optimal. The key
idea is that the bandwidth generates a trade-off between the bias and variance of
the point estimator, and hence it can be chosen to optimally balance this trade-
off. On the one hand, choosing a very small bandwidth reduces the bias because the
regression approximation is better. However, the smaller the bandwidth, the smaller
the number of observations used and hence the larger the variance. Conversely, a
large bandwidth allows the researcher to use a larger number of observations, hence
decreasing the variance, but the larger the bandwidth, the larger the bias, because
the parametric polynomial approximation deteriorates as observations farther away
from the cutoff are included. This trade-off is captured in the MSE, which can be
written as the sum of the variance and the squared bias.

Specifically, under Assumptions 1 and 3 (and regularity conditions), and for a
choice of polynomial approximation (controlled by the choice of p) and weights
near the cutoff (controlled by the choice of kernel function K(·)), the MSE of the RD
estimator can be approximated as:

MSE (τ̂SRD) = Bias2 + Variance ≈ h2p+2B2 + 1
nh

V,

where B and V denote constants that are specific to the kernel chosen and the data
generating process. The above expression can easily be minimized, yielding the (in-
feasible) optimal bandwidth choice hMSE ∝ (V/B2)1/(2p+3)n−1/(2p+3). Employing hMSE
leads to a MSE-optimal RD estimator that uses only observations whose running
variable falls within the neighborhood W = [r̄ − hMSE, r̄ + hMSE]. In fact, this band-
width choice makes the triangular kernel the optimal choice for weights (Cheng,
Fan, & Marron, 1997). Using these ideas, Imbens and Kalyanaraman (2012) and
Calonico et al. (2014b) recently developed, respectively, first and second generation
plug-in bandwidth selectors for hMSE (see Wand & Jones, 1995, for a review on
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bandwidth selection methods). In our analysis, we employ the second-generation
bandwidth selector proposed by Calonico et al. (2014b), denoted ĥMSE, which has
better finite- and large-sample properties. See Cattaneo and Vazquez-Bare (2016)
for a review of different bandwidth selection and related neighborhood selection
methods used in RD designs.

For inference, it is essential to account for the bias in the approximation to the un-
known regression functions. Nonparametric procedures are based on Assumption
3; this implies, by construction, that the regression functions near the cutoff will be
misspecified in general. How much bias there is depends on the data generating pro-
cess and bandwidth choice, with smaller bandwidths reducing bias at the expense
of increasing variance. In particular, a well-known result is that the MSE-optimal
bandwidth hMSE is too “large” for the misspecification bias to be negligible in the
distributional approximation of the estimator—implying that when the bandwidth
chosen is hMSE, inferences based on the Normal quantiles for the standard least-
squares coefficients in Procedure 1 will be invalid. One alternative is to choose a
bandwidth smaller than hMSE (undersmoothing), but this approach is ad hoc, leads
to power loss, and requires using different observations for point estimation and
inference. An alternative, proposed by Calonico et al. (2014b), is to explicitly incor-
porate the bias in the distributional approximation, and construct a t-test statistic
based on the ratio of the bias-corrected point estimator and a new variance estimator
that takes into account the variability introduced in the bias-estimation step. Thus,
the statistic employed re-centers and rescales the point estimator τ̂SRD to construct
an inference procedure with demonstrably better theoretical and empirical proper-
ties (Calonico, Cattaneo, & Farrell, 2016, 2017). Using this approach, our inference
results are captured by the robust p-value, which is simply the p-value calculated
using the robust bias-corrected statistic.

The above discussion is summarized in the following procedure.

Procedure 2 (Nonparametric Approach)

1. Select a neighborhood W = [r̄ − h, r̄ + h], with bandwidth h, polynomial de-
gree p, and kernel weighting function K(·). For the polynomial, usual choices
are p = 0 (constant regression) or p = 1 (linear regression). For weights near
the cutoff, the usual kernel choice is the triangular kernel, K(u) = 1 − |u|. Fi-
nally, the bandwidth is chosen to be h = ĥMSE, that is, the MSE optimal band-
width for the RD point estimator.

2. Drop all observations outside the neighborhood W, that is, keep only observa-
tions satisfying r̄ − h ≤ Ri ≤ r̄ + h.

3. Using weighted least-squares regression, estimate the coefficients in the full
treatment-interaction model:

Yi = α + τ Di + β1 R̄i + . . . + βp R̄p
i + ζ1 R̄i Di + . . . + ζp R̄p

i Di + εi

with weights given by K(R̄i/h), and where R̄i = Ri − r̄ is the re-centered run-
ning variable. The weighted least-squares estimate of τ in the above regression
model, denoted by τ̂SRD, estimates τSRD. Inference methods must account for
the misspecification bias, and hence robust bias-corrected heteroskedasticity-
robust (or cluster-robust) inference can be conducted using results in the liter-
ature (Calonico et al., 2016; Calonico et al., 2014b).

Table 4 presents the results from the nonparametric local polynomial analysis in the
Head Start case study, estimated using the software packages described in Calonico
et al. (2017). The table presents results from two analyses, one based on a local
constant (p = 0) and the other on a local linear (p = 1) polynomial approximation.
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Table 4. Robust bias-corrected local polynomial methods.

Constant model (p = 0) Linear model (p = 1)

h = ĥMSE h = ĥF P1 h = ĥMSE h = ĥF P1

Ages 5–9, HS-targeted causes, post-HS
RD treatment effect −2.114 −1.059 −2.409 −2.182
Robust 95% CI [−4.963, −0.149] [−4.34, −0.024] [−5.462, −0.099] [−5.722, −0.350]
Robust p-value 0.037 0.048 0.042 0.027
N−

W| N+
W 98 | 92 309 | 2015 234 | 180 309 | 215

h 3.235 9.000 6.810 9.000

Falsification Tests, robust p-values
Ages 5–9, injuries,

post-HS
0.880 0.960 0.728 0.787

Ages 5–9,
HS-targeted,
pre-HS

0.242 0.044 0.468 0.378

Notes: (i) Point estimators are constructed using local polynomial estimators with triangular kernel;
(ii) “robust p-values” are constructed using bias-correction with robust standard errors as derived in
Calonico, Cattaneo, and Titiunik (2014b); (iii) ĥMSE corresponds to the second generation data-driven
MSE-optimal bandwidth selector proposed in Calonico, Cattaneo, and Titiunik (2014b) and Calonico
et al., (2016); (iv) N−

W = ∑n
i=1 1(r̄ − h ≤ Ri < r̄), N+

W = ∑n
i=1 1(r̄ ≤ Ri ≤ r̄ + h).

While it is often recommended to employ local linear RD estimators (p = 1), we also
report the p = 0 case to facilitate later comparisons with the local randomization
framework discussed below. In each case, the RD point estimate is estimated twice,
once using the MSE-optimal bandwidth described above (ĥMSE) and the other using
the bandwidth chosen by Ludwig and Miller (2007) in the flexible parametric ap-
proach (̂hF P1). The local-polynomial results using the latter bandwidth are reported
for comparability with the flexible parametric results reported in Table 3. Notice
that ĥF P1 appears to be indeed too “large” when compared to ĥMSE.

As in Table 3, the top panel reports results for the main outcome of interest—
mortality of children ages five to nine from Head Start-targeted causes—and the
bottom panel reports p-values for the two placebo outcomes—child mortality from
non-HS-targeted causes and child mortality prior to implementation of Head Start.
For the local constant polynomial model, the estimated MSE-optimal bandwidth
ĥMSE is 3.235 and the effect of the program based on this bandwidth is −2.114
(robust p-value 0.037). When the bandwidth is instead ĥFP1 = 9, the point estimate
associated with a local constant model decreases considerably in absolute value
to −1.059. This point estimate, however, is likely to be considerably biased, since
a bandwidth of nine is almost three times larger than the MSE-optimal choice,
suggesting that a local constant approximation will fail to capture the curvature
of the underlying regression function. For this reason, a local linear fit for this
bandwidth is a preferable choice.

The last two columns of Table 4 show the results from a local linear model, both for
the MSE-optimal bandwidth and the fixed bandwidth. As expected, the MSE-optimal
bandwidth choice for the local linear model (6.811) is larger than the choice for
the local constant model (3.235), since the former can accommodate observations
further away from the cutoff and reduce the increased bias by allowing for a linear
approximation (i.e., an approximation of higher order). The point estimator using
this optimal bandwidth is −2.409, larger in absolute value but not too different from
the local constant effect. And the point estimator using the fixed flexible parametric
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bandwidth ĥFP1 = 9 yields an effect of −2.182, now much closer to the results from
the MSE-optimal bandwidth, as expected given that a slope is allowed. The effects
on the placebo outcomes cannot be distinguished from zero at conventional levels
if the preferred local linear approximation is used.

Additional Empirical Methods

Our discussion so far has focused exclusively on the most basic local polynomial
approaches for estimation and inference in RD designs. These methods can be
extended and complemented with more recent developments now available in the
literature. We briefly discuss three related methods, which are also fully available
in general-purpose software.

� Different bandwidths for control and treatment units. In some applications, it
may be advisable to employ different bandwidths on the left and on the right
of r̄ . Such bandwidths can also be chosen to be MSE-optimal, perhaps optimal
in some other sense, or simply chosen in an ad hoc way. In the case of Head
Start, we found that allowing for different bandwidths does not qualitatively
affect the main empirical findings, though the left MSE-optimal bandwidth
is substantially larger relative to the right MSE-optimal bandwidth, which is
unsurprising given that there are many more observations on the left than on
the right.

� Coverage error optimal bandwidths for confidence intervals. Calonico, Cattaneo,
and Farrell (2016, 2017) recently developed an alternative way of choosing the
bandwidth(s), which is tailored specifically to constructing confidence inter-
vals with the smallest possible coverage error (as opposed to minimizing the
MSE). This alternative bandwidth selector is smaller than hMSE (in large sam-
ples), leading to fewer observations used for inference. For more discussion
on bandwidth/window selection, see Cattaneo and Vazquez-Bare (2016). We
report Head Start empirical results using these alternative bandwidths in the
Supporting Information Appendix, where we find that results are consistent
with those reported above.7

� Pre-intervention covariate adjustments. Calonico et al. (2016) develop formal
local polynomial methods allowing for pre-intervention covariate adjustments.
Applying these methods to the Head Start data gives qualitatively similar results
to those reported herein, with smaller standard errors and a robust p-value that
is reduced by almost 50 percent. Our companion replication files include these
additional estimates for completeness.

Our companion replication software code implements all these additional empir-
ical methods, which we do not report here to conserve space.

RD BASED ON RANDOMIZATION NEAR THE CUTOFF

An alternative approach to RD analysis assumes that, in a small neighborhood or
window around the RD cutoff, the assignment of units to treatment or control status
is random, as it would be in an experiment. This local randomization framework
is conceptually different from the continuity-based framework described above. In
the continuity-based framework, the parameter of interest is the difference between
the average potential outcomes under treatment and control at the cutoff, and a

7 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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central concern is whether these regression functions (whose functional form is
fundamentally unknown) are well approximated at the cutoff. This concern about
approximation/extrapolation is not as central in the local randomization framework
because, in its simplest version, this approach implies that the regression functions
are constant over all values of the running variable in a window around the cutoff.
Instead, the central concern in the local randomization framework for RD analysis
is the selection of the region or window where the treatment can be regarded as
randomly assigned and, relatedly, whether the power of the inference procedures
used is adequate (on the other hand, size and coverage can be well controlled if
exact randomization-based inference methods are employed).

An advantage of the local randomization framework as developed by Cattaneo
et al. (2015) is that—once the window where randomization holds is known or
estimated—it justifies analyzing the RD design as one would analyze a random-
ized experiment. This means that there are two main alternatives for inference.
The first alternative defines the ATE in the window as the parameter of interest
and relies on large-sample approximations to derive the distribution of the relevant
test statistics. This can be implemented by assuming either that the potential out-
comes are random variables and relying on, say, large-sample approximations to
the difference-in-means test-statistic, or by assuming that the potential outcomes
are fixed and adopting a Neyman approach where the randomization distribution
of the test statistic is approximated by letting the number of units in the experiment
grow (Imbens & Rubin, 2015).

The second alternative assumes that the potential outcomes are non-random and
the population of n units is fixed. This permits the use of finite-sample exact ran-
domization inference methods, where the null distribution of the test statistic of
interest is derived directly from the randomization distribution of the treatment as-
signment inside the window, leading to inferences that are exact in finite samples.
This approach is sometimes called Fisherian inference, as it was first introduced by
Fisher (1935). Fisherian randomization-based inference methods are an appealing
alternative when there are few observations in the window where local random-
ization is plausible, which makes large-sample approximations unreliable. Since
small sample sizes near the cutoff are common in RD applications, it is natural and
advisable to employ Fisherian randomization-based inference methods to analyze
RD designs under a local randomization framework. Of course, if the sample size
inside the window where randomization is assumed to hold is large enough, then
large-sample inference methods will also be appropriate (either Neyman-type or
super-population type).8

In the remainder of this section, we discuss the local randomization approach
to RD analysis adopting a Fisherian randomization-based framework for inference
where both the sample and the potential outcomes are fixed. This framework was
first developed for RD settings by Cattaneo et al. (2015). We extend their framework
to develop inference methods that are appropriate not only when the potential
outcomes are unaffected by the running variable, as assumed by Cattaneo et al.
(2015), but also for the more general case where the running variable has a direct
effect on the potential outcomes. We also introduce and discuss three new sensitivity
procedures specifically tailored to RD designs. We apply all these methods to the
Head Start empirical application, and we also report point estimates and related
quantities (better justified in large samples) for comparison and completeness.

8 An alternative approach is to use permutation-based inference, which employs random potential out-
comes and different distributional assumptions/approximations under specific null hypotheses. For fur-
ther discussion on the relationship between randomization inference and permutation inference meth-
ods, see Ernst (2004).
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We start by modifying our notation to accommodate this local randomization
approach to RD analysis based on Fisherian inference methods. We let D be the
n × 1 vector collecting the observed treatment assignment for the n observations,
and the same for the score or running variable R—that is, D = (D1, D2, ..., Dn)′,
and R = (R1, R2, ..., Rn)′. Recall that throughout this paper, we use lower case to
indicate fixed non-random variables and upper case to indicate random variables.
The potential outcome of unit i for a given vector of treatment statuses d and a
vector of scores r is yi(d, r). The support of D is denoted by supp(D) := D ⊆ {0, 1}n

and similarly supp(R) := R ⊆ R
n. We collect these potential outcomes in a vec-

tor y(d, r) = (y1(d, r), y2(d, r), ..., yn(d, r))′. Finally, the observed outcome is Yi =
yi(D, R), i = 1, . . . , n, collected in the vector Y = y(D, R) taking values in the set
Y ⊆ R

n. In principle, the potential outcomes are allowed to depend on the treatment
assignments of all the units in the sample. Although the notation may seem compli-
cated at first, we employ it to highlight that some inference procedures are robust to
violations of some standard assumptions like SUTVA, as will be discussed shortly.

The notation does emphasize that in this sharp RD framework the only random
quantity is R (and, by implication, D, because of the RD treatment assignment rule).
The potential outcomes could depend on the running variable in an unrestricted
way. Previous work in this literature imposed the assumption yi(d, r) = yi(d) near
the cutoff, which implies that the average response to treatment is constant as
a function of the running variable (Cattaneo et al., 2015). In the section below,
we relax this requirement and propose instead a novel approach based on adjusting
outcomes via flexible modeling before employing randomization inference methods.
This approach is a strict generalization of the results available in the literature, in
the sense that our methods reduce to those already available whenever unadjusted
outcomes are used (i.e., whenever the adjustment is the identity function and hence
no adjustment is done).

The local randomization framework for RD assumes that there is a window around
the cutoff in which treatment is assigned as in a randomized experiment, that is, in
which the assignment mechanism (or probability law) of D is completely known. We
denote this window by W0 = [r̄ − w, r̄ + w], w > 0, which we assume symmetric only
for simplicity, and let RW0 be the subvector of R corresponding to the observations
with Ri ∈ W0—and similarly for other vectors like DW0 and YW0 . We also let DW0 be
the support of DW0 , and RW0 be the support of RW0 . Finally, we let NW0 denote the
total number of units inside the window, N+

W0
the number of treated units within this

window (i.e., units with r̄ ≤ Ri ≤ r̄ + w), and N−
W0

the number of control units within
this window (i.e., N−

W0
= NW0 − N+

W0
). As above, we continue to focus on a sharp RD,

where all units with Ri ≥ r̄ receive treatment and all units with score below r̄ receive
the control condition, and therefore the distribution of the assignment vector is
completely determined by the distribution of the running variable; the assignment
probabilities can be characterized by modeling the distribution of Ri instead of that
of Di directly. Finally, as is standard in the analysis of randomized controlled trials
using fixed potential outcomes (Imbens & Rubin, 2015; Rosenbaum, 2002b, 2010),
our analysis proceeds conditionally on those units with Ri within the window W0,
where local randomization is assumed. Therefore, our analysis applies only to those
units within the window, and does not necessarily apply more generally to other
units that could have fallen within the window.9

We summarize our notion of local randomization in the following assumption:

9 This is analogous to the analysis of experiments in the absence of random sampling, where the findings
only apply to the specific sample available (internal validity) and not necessarily to the super-population
to which the units belong (external validity).
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Assumption 4. (Finite population and assignment mechanism). There exists a
window W0 = [r̄ − w, r̄ + w], w > 0, such that the following holds:

1. Non-random potential outcomes. y(d, r) are fixed.
2. Unconfoundedness. P(RW0 ≤ r ; y(d, r)) = P(RW0 ≤ r), for all vectors r ∈ RW0 .
3. Known mechanism. P(DW0 = d) is known for all vectors d ∈ DW0 .

Part 1 in Assumption 4 states that the potential outcomes are non-random—that
is, they are fixed characteristics of the population of n units. Part 2 requires that,
inside the window W0 around the cutoff r̄ , the distribution of the vector of observed
scores does not depend on the potential outcomes. Because in our framework y(d, r)
are fixed quantities, the assumption should be interpreted as implying that the dis-
tribution of RW0 does not depend on the specific values that the (fixed) potential
outcomes take. For further discussion of this assumption in the context of fixed
potential outcomes, and its relationship to random potential outcomes, see Imbens
and Rubin (2015, Section 3). This condition rules out any type of selection into
treatment, as in a classical randomized experiment. Part 3 states that, inside the
window, the distribution of the treatment vector is known to the researcher. In the
Supporting Information Appendix, we offer a discussion linking this notion of local
randomization using fixed potential outcomes to other notions of local randomiza-
tion using random potential outcomes (building on Cattaneo et al., 2015; Sekhon
& Titiunik, 2017) and to related ideas based on continuity-based identification,
including Lee’s (2008) model of imprecise manipulation.10

As is customary in the randomization inference literature, we consider two assign-
ment mechanisms. The first one, usually known as fixed margins randomization,
follows the distribution:

P (DW0 = d) = 1∣∣DF M
W0

∣∣ =
(

NW0

N+
W0

)−1

, ∀d ∈ DF M
W0

,

where DF M
W0

= {
d ∈ {0, 1}NW0 :

∑NW0
i=1 di = N+

W0

}
. In words, this assignment assumes

that the number of treated units is fixed, and simply shuffles the treatment indi-
cator across the sample. The second one, which will be referred to as Bernoulli
trials, is characterized by:

P (DW0 = d) = qN+
W0 (1 − q)N−

W0 , ∀d ∈ DBE
W0

where DBE
W0

= d ∈ {0, 1}NW0 and q denotes the individual probability of treatment as-
signment. Intuitively, in this mechanism, treatment assignment is defined by simply
flipping a coin for each unit in the sample. Note that in the Bernoulli assignment,
unlike in the fixed margins assignment, the number of treated units is not fixed.

Both of these assignment mechanisms imply that the individual probabilities of
being treated are the same for all units. Furthermore, we note that many different
distributions on RW0 can induce one of the above treatment assignment mecha-
nisms, and for this reason we impose the assumption directly on DW0 instead of
on RW0 . Finally, in some applications, researchers may want to estimate q from the
data using, for instance, its maximum likelihood estimator q̂ = N+

W0
/NW0 . In such

cases, the associated randomization inference procedures may need adjustments
to account for the additional estimation error introduced by q̂, though at present

10 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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no such adjustments are available in the literature. In the remainder of this arti-
cle, we take fixed margins or complete randomization as the model for treatment
assignment P(DW0 = d) within W0, which does not require estimating additional pa-
rameters, and we employ the Bernoulli assignment mechanism only for robustness
checks.

Flexible Modeling of Outcomes Near the Cutoff

Without further assumptions, it is difficult to define a treatment effect of interest
because each unit’s potential outcome may depend not only on the unit’s own score
and treatment status, but on the other units’ as well. In the most general case,
the difference in potential outcomes for unit i under treatment and control status
will not be a scalar parameter but a function of (d1, d2, ..., di−1, di+1, ..., dn) and r.
Moreover, the running variable will generally be continuous, and hence r can take
uncountably many values. To make this problem more tractable, we assume that
there is a transformation of the potential outcomes that removes the dependence
on r.

Assumption 5. (Transformed outcomes). There exists a transformation φ(·) such
that, for all i with Ri ∈ W0, the transformed potential outcomes only depend on dW0 ,
that is,

φ (yi (d, r) , d, r) = ỹi (dW0 ) ∀ r ∈ R.

Assumption 5 reduces the number of potential outcomes of interest for each
individual to a finite number, since it makes it only a function of dW0 , which takes
(at most) 2NW0 values. The simplest and perhaps most natural way to satisfy this
assumption is to assume an exclusion restriction requiring that, inside W0, the
potential outcomes depend on the score only through the value of the treatment
indicator—that is, only on whether Ri is smaller or greater than the cutoff r̄ , but not
on the particular value of Ri . This is precisely what Cattaneo et al. (2015) assumed
in their framework. Assumption 5 above weakens this requirement by allowing Ri
to affect the potential outcome of individual i not only through Di , but also directly.

To implement this approach, we propose a model that simultaneously allows us
to make the dependence of the potential outcomes on r more tractable, and link
the local randomization RD approach to the continuity-based framework discussed
above. The particular model we consider is as follows:

yi (d, r) =
{

αi (dW0 ) + (ri − r̄) β−
1 + (ri − r̄)2

β−
2 + · · · + (ri − r̄)p

β−
p if di = 0

αi (dW0 ) + (ri − r̄) β+
1 + (ri − r̄)2

β+
2 + · · · + (ri − r̄)p

β+
p if di = 1

for all i such that Ri ∈ W0 and p is a non-negative integer denoting the degree of the
polynomial.

First, we note that this specification assumes that each unit’s potential outcome
depends on the treatment assignment vector d and on the unit’s score ri , but not on
other units’ score values. Second, the model states that the direct effect of the score
on the potential outcomes can be captured by a polynomial of order p on the unit’s
score, with slopes that are constant for all individuals on the same side of the cutoff—
that is, for all units with the same treatment status. Third, our model allows the
intercept (captured by the term αi(dW0 )) to vary arbitrarily by unit; these intercepts
capture the effect of treatment net of the score’s “direct effect.” Thus, adopting a
model where the potential outcomes are directly affected by the value of the score
through a polynomial, we can directly connect the local randomization approach
with the continuity-based framework described above if the unknown conditional
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regression functions of the potential outcomes were given (or approximated) by two
polynomial functions on either side of the cutoff.

Finally, a particularly important case of this parametric model of transformed
(potential) outcomes occurs when β−

j = 0 = β+
j for j = 1, 2, · · · , p, which leads to

yi (d, r) = αi (dW0 ) ≡ ỹi (dW0 )

for all units with their score inside W0—the exclusion restriction adopted by
Cattaneo et al. (2015). When this restriction holds, the specific value of Ri does not
affect the potential outcomes directly. This leads to potential outcomes functions
that are constant functions of the score inside W0, removing all uncertainty regard-
ing functional form. The more general polynomial model relaxes this assumption
by allowing the score to affect the potential outcomes directly—albeit by making a
very specific functional form assumption.

Given the general polynomial model, the transformed potential outcomes are
defined as:

ỹi (dW0 ) :=
{

yi (d, r) − (ri − r̄) β−
1 − · · · − (ri − r̄)p

β−
p = αi (dW0 ) if di = 0

yi (d, r) − (ri − r̄) β+
1 − · · · − (ri − r̄)p

β+
p = αi (dW0 ) if di = 1

for all i such that Ri ∈ W0. Thus, the transformed potential outcomes isolate the
portion of the potential outcome that is related to the treatment but unrelated to
the particular value taken by the running variable.

Since the values of β−
1 , . . . , β−

p , β+
1 , . . . , β+

p are unknown, we must calculate them.
Given our model, this is easily done using least-squares methods, where two separate
regressions of the observed outcome on a polynomial of order p on the score inside
the window W0 are run, separately for observations above and below the cutoff. We
let β̃−

j and β̃+
j denote the values of the slopes calculated by least-squares methods

for k = 1, 2, . . . , p. This type of adjustment does not come from a model for a ran-
dom population but rather from an algorithmic fit, since the potential outcomes
are non-stochastic (see, e.g., Rosenbaum, 2002a). Given these definitions, the ob-
served transformed outcomes can be calculated as Ỹi(DW0 ) = yi(D, R) − (Ri − r̄)β̃−

1 −
(Ri − r̄)2β̃−

2 − · · · − (Ri − r̄)pβ̃−
p for units in the window to the left of the cutoff and

Ỹi(DW0 ) = yi(D, R) − (Ri − r̄)β̃+
1 − (Ri − r̄)2β̃+

2 − · · · − (Ri − r̄)pβ̃+
p for units in the win-

dow to the right of the cutoff; the vector that collects them is denoted by Ỹ(DW0 ).
It is important to emphasize, however, that this approach requires a correct spec-
ification of the polynomial model to yield valid results. Just as in the parametric
modeling scenario discussed earlier, this adjustment approach ignores the possi-
bility of misspecification, so using an incorrect model will generally lead to invalid
results, with the difference that in this case the model needs to correctly fit the data
not in a population but in the observed sample.

Testing the Sharp Null of No Effect

Having stated a randomization mechanism and a transformation model for the
potential outcomes as in Assumptions 4 and 5, the null hypothesis that the treatment
has no effect on any unit inside the window W0 where local randomization holds
can be tested using Fisherian randomization-based inference. This hypothesis is
usually known as the sharp null hypothesis of no effect, and in our context is defined
as H0 : αi(dW0 ) = αi(d∗

W0
) for any dW0 , d∗

W0
and for all i such that Ri ∈ W0. In words,

this means that under the null hypothesis, the (adjusted) potential outcomes are the
same regardless of the treatment assignment. Letting this common value be αi(0),
under this hypothesis, we have ỹi(dW0 ) = ỹi(d∗

W0
) = αi(0) for any dW0 , d∗

W0
and all i
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such that Ri ∈ W0. Collecting all observed transformed outcomes in W0 in the vector
Ỹ(DW0 ) and all αi(0) in W0 in the vector α0

W0
, under H0 we have that ỸW0 = α0

W0
. But

α0
W0

is constant under all realizations of D. Therefore, any test-statistic T(DW0 , ỸW0 )
satisfies T(DW0 , ỸW0 ) = T(DW0 ,α

0
W0

) under H0, implying that its null distribution is
known—because the only source of randomness in T(DW0 ,α

0
W0

) is the treatment
assignment mechanism, whose distribution is assumed to be known.

It follows that, under the sharp null hypothesis, we can compute an exact p-
value for any observed value Tobs of the test-statistic, as described in the following
procedure.

Procedure 3 (Local Randomization Approach)

1. Select a window W0 = [r̄ − w, r̄ + w] where local randomization is assumed to
hold, and a model of potential outcomes adjustment. Typical models include
constant regression (p = 0, no adjustment) and linear regression (p = 1). This
gives the (adjusted) outcomes (Ỹ1, Ỹ2, . . . , ỸNW ).

2. Assume a treatment assignment mechanism. We employ fixed margins or com-
plete randomization by default, but also use Bernoulli trials for robustness
checks.

3. Select a test statistic. Usual examples include difference-in-means,
Kolmogorov-Smirnov, and Wilcoxon-Mann-Whitney statistics. The finite-
sample exact p-value for the null hypothesis of no treatment effect is calculated
using randomization-inference via permutation of the treatment status of units
under the sharp null hypothesis. See the Supporting Information Appendix for
details on numerical implementation.11

Randomization inference methods can be extended to any sharp null hypothesis,
that is, any null hypothesis under which the missing potential outcomes can be
imputed. Thus, for example, it can be used to test that the treatment effect is constant
and additive under no interference, or to test for interference after imposing a
parametric model as in Bowers, Fredrickson, and Panagopoulos (2013).

A common choice for the statistic T is the difference in means. Letting I0 =
{i : Ri ∈ W0} be the set of units inside the window, this statistic is

TDM =
∑

i∈I0
Ỹi Di∑

i∈I0
Di

−
∑

i∈I0
Ỹi (1 − Di)∑

i∈I0
(1 − Di)

,

or some variation of it such as its absolute value or the Studentized version that
divides by the standard error. Another choice is to use rank-based statistics such as
the Wilcoxon or Mann-Whitney statistics, or the Kolmogorov-Smirnov (KS) statistic,
TKS = supy|F̂D=1(y) − F̂D=0(y)|, where F̂D=1(y) and F̂D=0(y) are estimates of the dis-
tribution function of the (transformed) outcome for the treated and control units,
respectively. See Lehmann (1998), Rosenbaum (2002b), and Imbens and Rubin
(2015) for discussions on the choice of statistic and power for randomization tests.

Naturally, the application of Fisherian inference to RD analysis is straightforward
if the window W0 around the cutoff where local randomization holds is known to
the researcher. In practice, however, this window will be unknown and must be esti-
mated. We choose this window following the procedure proposed in Cattaneo et al.

11 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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(2015), who suggest finding an interval around the cutoff in which pretreatment
covariates are balanced between treated and control units. We briefly discuss im-
plementation issues related to the choice of W0 below when we present our empirical
illustration.

Once the observations satisfying Assumptions 4 and 5 are identified (i.e., once a
window around the RD cutoff is selected and, if needed, a model of potential out-
comes is imposed), the distribution of any test statistic is known under the sharp
null hypothesis of no effect because the only randomness in the model is generated
by the known assignment mechanism. Therefore, once a test statistic is selected and
an assignment mechanism is specified, the sharp null of no effect can be tested by
computing the exact p-value P(T(DW0 ,α

0
W0

) ≥ Tobs). While conceptually straightfor-
ward, computing this probability exactly is usually impossible in practice because
its computation requires calculating the test statistic under all possible configura-
tions of treatment assignments, DW0 , as specified by the assignment mechanism,
P(DW0 = d). The solution to this numerical problem is to approximate the p-value
by simply simulating different treatment assignments DW0 , according to P(DW0 = d),
and then computing the corresponding p-value using the simulated statistics. To
conserve space, we outline in the Supporting Information Appendix how this pro-
cedure is carried out in practice, but we highlight that this method is in fact already
implemented in our companion Stata and R software implementations.12

Estimands, Estimation, and Inference under SUTVA

Testing the sharp null hypothesis does not require any assumptions beyond having
(transformed) potential outcomes that depend only on D and knowledge of the
randomization distribution of D. However, point and confidence interval estimation,
as well as testing of other hypotheses, requires further assumptions. A very common
simplifying assumption, and one that was adopted by the continuity-based approach
discussed above, is to assume that units do not interfere with each other, usually
called the stable unit treatment value assumption (SUTVA).

Assumption 6. (Local SUTVA). For all i with Ri ∈ W0, ỹi(dW0 ) = ỹi(di).

Assumption 6 simply states that the potential outcomes for unit i only depend
on unit i’s treatment assignment. In other words, under SUTVA, each unit has only
two transformed potential outcomes that simplify to ỹi(1) = yi(1, r) − β+

1 (r − r̄) −
β+

2 (r − r̄)2 − · · · − β+
p (r − r̄)p = αi(1) and ỹi(0) = yi(0, r) − β−

1 (r − r̄) − β−
2 (r − r̄)2 −

· · · + β−
p (r − r̄)p = αi(0). Under this assumption, the observed unadjusted and trans-

formed potential outcomes can be written, respectively, as Yi(Di, Ri) = Di yi(Di, Ri) +
(1 − Di)yi(1 − Di, Ri) and Ỹi(Di) = Di ỹi(Di) + (1 − Di)ỹi(1 − Di), for Di ∈ {0, 1}, and
we can define the treatment effect for unit i as τi := ỹi(1) − ỹi(0) = αi(1) − αi(0). In
principle, the treatment effect can vary arbitrarily across units. A common parame-
ter of interest in this case is the ATE for units with scores in W0 that can be defined
as τW0 = 1

NW0

∑
i∈I0

(ỹi(1) − ỹi(0)) where, as before, I0 is the set of units inside the

window.
When the transformed outcomes come from a least-squares fit at each side of the

cutoff, τW0 captures the difference in the intercepts of the two regression functions.

12 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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In other words, we have yi(d, r̄) = αi(d) for d ∈ {0, 1}. In this case, and given our
definition of the transformed outcomes, it follows that

τW0 = 1
NW0

∑
i∈I0

(ỹi (1) − ỹi (0)) = 1
NW0

∑
i∈I0

(αi (1) − αi (0)) ,

which is the ATE when the running variable is evaluated at the cutoff r̄ . This is
the closest parameter to the usual RD estimand in the continuity-based framework.
Note, however, that this parameter is defined relative to the sample determined
by the choice of window W0 where local randomization is assumed to hold (or, at
least, assumed to give a good approximation). Therefore, our results only apply to
this sample, and do not necessarily generalize to other possible samples that would
be realized in a hypothetical repeated sampling setting (recall that R is assumed
random in our framework). A complete discussion connecting “population” and
“super-population” analysis, in the context of classical randomized experiments
and related settings, is given in Imbens and Rubin (2015) and references therein.

A possible estimator for the ATE is the difference in means of the observed trans-
formed outcomes for treated and control units inside the window,

τ̂W0 = 1

N+
W0

∑
i∈I0

Ỹi Di − 1

N−
W0

∑
i∈I0

Ỹi (1 − Di) .

When the transformed outcomes are obtained by subtracting the slopes from a
linear or polynomial regression of the outcome on the score at each side of the cutoff,
τ̂W0 corresponds to the difference in the intercepts of the two regressions. Hence,
the estimator coincides with the local linear regression estimator using a uniform
kernel and bandwidth equal to half the length of the window W0 (i.e., h = w), one of
the most popular RD estimators in the continuity-based approach.

The difference-in-means statistic is appealing because it can be used directly to
obtain a point estimator of the ATE, while for other statistics one needs to construct
a Hodges-Lehmann estimate (under additional assumptions). Moreover, whenever
transforming the outcomes is not needed, this statistic is unbiased for the ATE
when the treatment assignment follows a fixed-margin randomization scheme or
Bernoulli trials, conditionally on the observed sample. The main drawback, however,
is that when arbitrary heterogeneity of treatment effects is allowed, randomization
methods can no longer be applied to perform inference for the ATE because, unlike
the sharp null hypothesis of no effect, the null hypothesis of no ATE is not sharp—
that is, it does not allow the researcher to impute all the missing potential outcomes.
Therefore, the statistical significance of the estimated ATE must be based on a large-
sample approximation to its distribution. In the finite population framework, this
leads to a Neyman approach to causal inference, which relies on a Normal distribu-
tional approximation with a two-sample standard error. This inference approach is
asymptotically conservative.

There are, however, some restrictions that can be imposed to the treatment ef-
fects under which the sharp null of no effect is informative about the ATE. For
example, if the treatment effect is non-negative—yi(1) ≥ yi(0) for all observations in
the window—then the ATE is equal to zero if and only if yi(1) = yi(0) for all i in the
window, that is, if the sharp null of no effect holds. Hence, rejecting the sharp null
implies rejecting the null that the ATE is equal to zero.

Journal of Policy Analysis and Management DOI: 10.1002/pam
Published on behalf of the Association for Public Policy Analysis and Management



Methods for Policy Analysis / 667

Randomization-Based Analysis of Head Start

We now apply the Fisherian framework to perform local randomization RD analysis
in the case of Head Start. We start by choosing the window in which the local ran-
domization assumption is plausible based on pretreatment covariates. The window
selection procedure treats each pretreatment covariate as an outcome, and tests
the sharp null hypothesis of no effect in windows of increasing length. The chosen
window is one of the largest windows such that the minimum p-value across all
tests and for all (or most) smaller windows is above a certain cutoff (Cattaneo et al.,
2015). We emphasize that multiple testing adjustment is not required in this context,
and possibly not advisable either, since the goal is to be conservative and reject the
null hypothesis with high probability to ensure that the selected window is plausi-
bly consistent with the (local) randomization assumption. In other words, adjusting
p-values for multiple testing will necessarily lead to a larger selected window, and
hence we prefer to be (overly) conservative when it comes to window selection. For
implementation, our chosen test statistic is the KS statistic, and our covariates come
from the 1960 census, including population, schooling, and demographic charac-
teristics. The complete list of variables, together with the results for other choices
of statistics and related methods, are in the Supporting Information Appendix.13

We start with a window of 0.3 and increase it by 0.2 at each step. Panel (a) in
Figure 2 depicts the minimum p-value from a KS test as a function of window
length. Since we re-center the running variable, R̄i = Ri − 59.1984, the cutoff is
r̄ = 0. As shown in Figure 2a, although the sequence of p-values is not monotonic, it
stabilizes below 0.2 after a window length of 2×1.1. Our chosen window is therefore
Ŵ0 = [−ŵ, ŵ] = [−1.1, 1.1], which is about a third of the MSE-optimal bandwidth
(ĥMSE = 3.235), and considerably smaller than the ones used in the flexible paramet-
ric specifications (ĥFP1 = 9 and ĥFP2 = 18). We explore the robustness of our results
to the choice of window below, and in the Supporting Information Appendix.14

Panel (b) in Figure 2 shows a scatter plot of the outcome of interest, county-level
mortality rate of children age five to nine from HS-targeted causes, against the re-
centered running variable in the selected window. This window includes 43 and
33 observations below and above the cutoff, respectively. Even though the control
and treated groups seem slightly unbalanced in terms of size, a binomial test that
the probability of being treated is 0.5 does not reject the null hypothesis (p-value =
0.302). Moreover, consistent with the idea of local randomization, the scatter plot
in Figure 2b suggests no clear relationship between the running variable and the
outcome.

The point estimates—calculated as differences in means and shown as horizontal
lines in Figure 2b—and their corresponding p-values can be seen in Table 5. For
comparison, we also show the results for windows of length equal to (twice) the
MSE-optimal bandwidth and the bandwidth chosen for the flexible parametric
specification. The results are consistent with the findings from previous sections. In
the case of no adjustment/transformation (p = 0, and SUTVA)—that is, assuming
ỹi(dW0 ) = yi(d, r) = yi(di)—the point estimate in Ŵ0 = [−1.1, 1, 1] is very close
in magnitude and with the same sign and statistical significance as the ones
found in previous sections, with a p-value below 0.01. Notice that this p-value
does not require imposing SUTVA (or a treatment effect model), but it does

13 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
14 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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Figure 2. Window selection and outcome of interest.

require the exclusion restriction implied by Assumption 5. On the other hand,
the estimated effect is closer to zero and not significant for the larger windows
ŴMSE = [−ĥMSE, ĥMSE] = [−3.235, 3.235] and ŴFP = [−ĥFP1, ĥFP1] = [−9, 9].

When transforming the outcomes using a linear model (p = 1), the results for the
outcome of interest using Ŵ0 are preserved—the point estimate increases slightly
in absolute value and remains strongly statistically significant. The estimates for
the two larger windows increase considerably in absolute value relative to the p = 0
results and become statistically significant, now yielding similar conclusions to
the results calculated within Ŵ0. Regarding the falsification tests, the effects on
both placebo outcomes are indistinguishable from zero in Ŵ0 for both the constant
and linear specifications. For the wider windows, the results are mixed, with the
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Table 5. Local randomization methods.

No transformation (p = 0) Linear transformation (p = 1)

W = Ŵ0 W = ŴMSE W = ŴF P W = Ŵ0 W = ŴMSE W = ŴF P

Ages 5–9, HS-targeted causes, post-HS
RD treatment effect −2.280 −1.240 −0.691 −2.515 −3.726 −1.895
Fisher’s p-value 0.009 0.156 0.145 0.006 0.000 0.000
N−

W| N+
W 43 | 33 98 | 92 309 | 215 43 | 33 98 | 92 309 | 215

w 1.100 3.235 9.000 1.100 3.235 9.000

Falsification tests, Fisher’s p-values
Ages 5–9, injuries,

post-HS
0.699 0.606 0.059 0.185 0.762 0.908

Ages 5–9, HS-targeted,
pre-HS

0.937 0.012 0.731 0.227 0.777 0.013

Notes: (i) Point estimators are constructed using difference-in-means of untransformed and transformed
outcomes, respectively, with a uniform kernel; (ii) randomization p-values are obtained using 10,000 per-
mutations; (iii) w corresponds to length of the half windows around zero of the centered running variable
(R̄i = Ri − r̄), that is, W = [−w,w]; (iii) Ŵ0 = [−ŵ, ŵ] is selected as discussed in the text, employing the
method described in Cattaneo et al. (2015), while ŴMSE = [−ĥMSE, ĥMSE] and ŴF P = [−ĥF P , ĥF P ]; (iv)
N−

W = ∑n
i=1 1(r̄ − w ≤ Ri < r̄), N+

W = ∑n
i=1 1(r̄ ≤ Ri ≤ r̄ + w).

linear adjustment rejecting the null for one of the placebo outcomes at 1 percent in
ŴFP. This is not surprising because for the larger windows the assumption of local
randomization is implausible.

Finally, under our assumptions (and SUTVA), a constant treatment effect model
of the form αi(1) = αi(0) + τ can be used together with the randomization-based
procedures to calculate 95 percent confidence intervals, by collecting the range
of τ0 values that fail to be rejected in a test of the null hypothesis H0 : αi(1) =
αi(0) + τ0. This hypothesis is equivalent to testing the sharp null hypothesis on
the adjusted transformed potential outcomes, where the adjustment removes the
hypothesized treatment effect from the treated transformed outcomes, that is, ˜̃Yi =
Ỹi − Diτ0 and T(DW0 ,

˜̃YW0 ) = T(DW0 ,α
0
W0

) under H0. We report these randomization-
based confidence intervals in the next section.

Sensitivity Analysis and Robustness Checks

We now develop three novel methods to assess the robustness of the results under
the local randomization assumption, specifically tailored to the particular features
of RD designs. We focus on three main underlying assumptions or choices: (i)
window length, (ii) interference between units, and (iii) misspecification of the
randomization mechanism.

Sensitivity to Window Length

A natural question when implementing the local randomization framework for RD
analysis is how the results vary for different window choices. To assess the sensitivity
of the inferential results to this choice, Figure 3 displays the randomization p-
values for a list of window choices and a grid of values for the treatment effect
under an additive treatment effect model using constant (left) and linear (right)
adjustments. The black region indicates p-values close to one, so for each window
length, projecting this region onto the vertical axis gives the range of treatment
effect values that cannot be rejected in a hypothesis test that assumes a constant
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length of the half windows around zero of the centered running variable R̄i = Ri − r̄ , that is, W = [−w; w].

Figure 3. Sensitivity of p-values to window length choice.

treatment effect model. In other words, this region gives a confidence interval for
the treatment effect via inversion methods.15

15 More precisely, the figure is constructed in the following way. First, define a grid of values for the
treatment effect and a set of window lengths. Then, for each window and hypothesized treatment effect
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Figure 3 suggests that the results are robust to the window length, starting at
values of the treatment effect around −2.5 and then stabilizing around −1.3. Note,
however, that as the window length increases the estimates stop being significant,
as the 95 percent confidence interval—the range of treatment effect values that are
not rejected with a 5 percent-level test—includes zero. This is consistent with our
findings in Table 5. The graph with linear adjustment shows the same qualitative
results although with more variability, which is understandable given that for small
window lengths the fit can be sensitive to outliers. In all, while the treatment effect
vanishes for large windows, in the range of bandwidths for which the local random-
ization assumption is plausible, the evidence for a significant negative treatment
effect seems robust. In the Supporting Information Appendix we present formal
empirical results for w ∈ {0.9, 1.1, 1.3, 1.5, 2.7}.

Inference in Presence of Interference

We now consider sensitivity of the results to the SUTVA assumption. While this
is a useful and extremely common assumption, there are some scenarios under
which it might be violated in RD applications. For instance, greater vaccination
rates among children in treated counties may lower disease contagion in geo-
graphically adjacent counties, even if adjacent counties do not receive the pro-
gram. In this case, the potential outcome of a county would depend not only on
the county’s own treatment status, but also on the treatment status of adjacent
counties. This phenomenon is common in applications that consider public health
interventions.

As discussed above, the possibility of interference is immaterial when testing
the sharp null hypothesis of no effect for any unit. But when the sharp null of
no effect is rejected, as in our case, it is natural to ask what can be said about
the treatment effect. This magnitude, however, cannot be defined in a straight-
forward way when a unit’s potential outcome depends on other units’ treatment
assignments. The approach in Rosenbaum (2007) does not assume any particular
structure for the type of interference, and is based on test inversion to provide
confidence intervals for a particular measure of the benefits of a treatment. More
precisely, define a placebo or uniformity trial as a trial in which units are ran-
domly divided into two groups, but treatment is withheld from all units. In this
type of trial, the division of units into groups is merely a labeling of units, since
nobody receives any treatment, and therefore the transformed outcomes in the
uniformity trial, ỸU

W0
, satisfy ỸU

W0
= αW0 . Let TU := T(DW0 , ỸU

W0
) be the value of the

statistic in this placebo trial. The key idea is that, although the value of TU is un-
observable (because the placebo trial is never performed), in such a trial the null
hypothesis of no effect holds by construction and hence the distribution of TU is
known.

Define � = T − TU, where the arguments are omitted to ease notation. This
magnitude measures the difference in the statistic under the experiment un-
der consideration, T , and the placebo experiment, TU. Hence, if the treatment
has no effect, � = 0. For example, suppose T is the difference in means. Then
T = 1

N+
W0

∑
i∈I0

Ỹi Di − 1
N−

W0

∑
i∈I0

Ỹi(1 − Di) and hence � = 1
N+

W0

∑
i∈I0

(Ỹi − ỸU
i )Di −

1
N−

W0

∑
i∈I0

(Ỹi − ỸU
i )(1 − Di). For this choice of T , � is the difference between how

τ , test the null that the (constant) treatment effect is equal to τ and obtain the p-value. Each p-value is
plotted in the figure, with darker colors indicating p-values closer to one and whiter colors indicating
p-values closer to zero.
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Table 6. Ninety-five percent confidence intervals under treatment effect model and interfer-
ence.

W = Ŵ0 = [−1.1, 1.1]

No transformation
(p = 0)

Linear transformation
(p = 1)

Ages 5–9, HS-targeted causes, post-HS
RD treatment effect −2.280 −1.240
Fisher’s p-value 0.009 0.006
95% CI, Treatment effect model [−3.975, −0.575] [−4.225, −0.800]
95% CI, Interference [−2.330, −2.218] [−2.566, −2.449]
N−

W| N+
W 43 | 33 43 | 33

Notes: (i) Point estimators are constructed using difference-in-means of untransformed and transformed
outcomes, respectively, with a uniform kernel; (ii) randomization p-values and confidence intervals are
computed using the methods in Cattaneo et al. (2015) and the new methods presented in this paper
(with and without potential outcomes adjustments); (iii) W corresponds to window around zero of the
centered running variable R̄i = Ri − r̄ ; (iv) N−

W = ∑n
i=1 1(r̄ − w ≤ Ri < r̄), N+

W = ∑n
i=1 1(r̄ ≤ Ri ≤ r̄ + w);

(v) all empirical results are obtained using the implementations described in Cattaneo et al., (2016).

much the treated and control groups deviate (on average) from the zero-effect case.
In our case, � measures how much bigger the ATE is for treated counties compared
to the control counties.16

Even though � is unobservable, a confidence set for this random variable can
be constructed based on observable information. Let κ1 and κ2 be some constants
satisfying κ2 < κ1. Then P[T − κ1 ≤ � ≤ T − κ2]= P[κ2 ≤ TU ≤ κ1]. Hence, if κ1 and
κ2 are chosen to be the α/2 and 1 − α/2 quantiles of TU for some level α, it follows
that � ∈ [T − κ1, T − κ2] with probability 1 − α. In practice, the values for κ1 and κ2
can be recovered from the randomization distribution of TU, and T is replaced by
its observed value.

The main advantage of this approach is that it does not place any restriction
on the type of interference that is allowed between units. An alternative approach,
described in Bowers, Fredrickson, and Panagopoulos (2013), consists of specifying a
parametric model for the potential outcomes, explicitly modeling how the treatment
spills from the treated to the control units. This setting allows the researcher to
obtain point estimates for treatment effects and to assess how these estimates vary
for different degrees of interference.

Table 6 reports Fisherian randomization-based confidence intervals for τ in a
constant treatment effect model that assumes SUTVA (described above), and also
randomization-based confidence intervals for � under arbitrary interference, both
reported in our chosen window Ŵ0 = [−1.1, 1.1]. The point estimates, already re-
ported in Table 5 above, are also shown for completeness and comparability. The
95 percent confidence interval for τ under SUTVA ranges from roughly −4 to −0.6
under the local constant model, and changes only slightly when estimated under
a (local) linear transformation for the outcomes. The confidence intervals that
allow for interference are much narrower, do not include zero, and contain the
point estimate calculated using difference-in-means—suggesting that the negative
results reported in previous sections are “robust” to the presence of arbitrary inter-
ference between units. While these confidence intervals are, of course, not strictly

16 Note that when interference is possible, the average of the differences Ỹi − ỸUi for the control group
may be nonzero because the treatment may indirectly affect the outcomes of the control units.
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Table 7. Rosenbaum sensitivity analysis.

Window half length (w)

w = 0.3 w = 0.5 w = 0.7 w = 0.9 w = 1.1 w = 1.3 w = 1.5

Randomization mechanism
Independent Bernoulli trials 0.0458 0.1028 0.0578 0.0506 0.0098 0.0272 0.0202
Fixed margins 0.0458 0.0954 0.055 0.0456 0.0092 0.0246 0.0188

Upper bound p-values
γ = 0.09; exp(γ ) = 1.1 0.0482 0.109 0.0636 0.0604 0.016 0.031 0.0248
γ = 0.18; exp(γ ) = 1.2 0.0606 0.1296 0.0814 0.0866 0.0288 0.055 0.0444
γ = 0.26; exp(γ ) = 1.3 0.0754 0.1588 0.1126 0.1204 0.0474 0.0904 0.0836
γ = 0.34; exp(γ ) = 1.4 0.0938 0.1968 0.1512 0.1668 0.0774 0.1416 0.129

Notes: (i) Rosenbaum sensitivity analysis conducted as explained in the text, following Rosenbaum
(2002b, 2010); Imbens and Rubin (2015); (ii) w corresponds to length of the half windows around
zero of the centered running variable R̄i = Ri − r̄ , that is, W = [−w,w]; (iii) all empirical results are
obtained using the implementations described in Cattaneo, Titiunik, and Vazquez-Bare (2016); (iv) the
independent Bernoulli trials use q = q̂.

comparable, the empirical evidence presented does suggest a statistically significant
effect of Head Start on child mortality using randomization-based methods.

Misspecification of the Randomization Mechanism: Rosenbaum Sensitivity Analysis

As a third robustness check, we propose to conduct sensitivity analysis in the local
randomization RD framework, following the method in Rosenbaum (2002b). The
main idea is to evaluate how inferences about the null hypothesis are affected by the
presence of a binary unobservable covariate that changes the probability of receiving
treatment. More precisely, assume that the randomization mechanism follows a
Bernoulli experiment where the individual probability of treatment P(Di = 1) =
qi = exp(γUi)/(1 + exp(γ )), where Ui ∈ {0, 1} is unobserved. This implies that units
with Ui = 0 and Ui = 1 have different probability of receiving the treatment. The
sensitivity analysis considers how different values of γ , which measures the degree
of departure from a randomized experiment, affect the randomization p-value. See
Rosenbaum (2002b) for further discussion, and Cattaneo, Titiunik, and Vazquez-
Bare (2016) for details on implementation.

The results from this sensitivity analysis for different windows can be seen in
Table 7. The bounds on the p-values are calculated using a Bernoulli randomization
mechanism. The resulting p-values are shown in the first line of the table. For
comparison, the second line shows the fixed-margins p-values, which are very
close, showing that changing the assignment mechanism does not affect our
inferences considerably. The lower panel of Table 7 shows the upper bound for
the randomization p-value for different values of γ . We choose values of γ to get
exp(γ ) in the range {1.1,1.2,1.3,1.4}. These values correspond to an unobserved
confounder of increasing “strength”: when exp(γ ) takes values in {1.1,1.2,1.3,1.4},
we are hypothesizing that the odds of receiving treatment for a treated unit are,
respectively, 10, 20, 30, and 40 percent higher than for a control unit.

For our chosen window [−1.1, 1.1], the upper bound is at most 0.077 for the
values of γ considered. Hence, even if the unobservable variable Ui could increase
the odds of receiving treatment for a treated unit by 40 percent relative to a control
unit, the results would still be significant at the ten percent level. The other win-
dows considered in the table seem to be less robust, although most results would
remain significant at the 5 percent level even if the odds ratio was increased by
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20 percent relative to the case of no hidden bias. These results suggest that the pres-
ence of moderately-sized unobservable confounders would not dramatically affect
our inferential conclusions.

DISCUSSION

We have discussed and illustrated two alternative approaches to the analysis of RD
designs. In the first, most common approach, the conditional regression functions
of the potential outcomes given the score are assumed to be continuous around the
cutoff and estimation and inference are based on polynomial approximations to
these unknown functions and extrapolation at the cutoff.

In the global parametric approach, these regression functions are assumed to
have an exact parametric form on the entire support of the running variable. In the
flexible parametric approach, a polynomial parametric model is also assumed but
this specific model is imposed only in a neighborhood of the cutoff and not on the
entire support of the score. Finally, in the nonparametric approach, the shape of the
regression functions is left unspecified, and the functions are approximated using
nonparametric local polynomial methods, where the neighborhood of approxima-
tion is typically chosen optimally to balance bias (which increases as observations
far from the cutoff are included in the estimation) and variance (which increases
as observations far from the cutoff are discarded to reduce bias), and inference
accounts for the resulting misspecification error. Estimation and inference in this
framework are always based on large-sample approximations in a super-population
framework.

The second framework for RD analysis is one that, instead of relying on continuity
of unknown functions and extrapolation, assumes that, in a small window around
the cutoff, the treatment is assigned randomly (as it would have occurred in an
experiment). Under this assumption, estimation and inference can be based on
experimental methods. We emphasized in particular an experimental method where
both the potential outcomes and the population of units are seen as fixed and the only
randomness comes from the value of the score, which in turn determines treatment
assignment. In this Fisherian randomization-based framework, the null distribution
of test statistics can be derived exactly from the randomization distribution of the
treatment assignment. In the specific RD setting, we do not know exactly what this
distribution is, but we can reasonably approximate it by fixed-margins or binomial
randomization mechanisms—where, in the latter, the probability of treatment may
be estimated from data. Just like choosing a bandwidth is crucial in the large-sample
approaches based on continuity, choosing the window where randomization of
the treatment is plausible is crucial in the local randomization approach. For this
reason, we also introduced and discussed several sensitivity analysis methods in the
context of local randomization.

In recent empirical work, it has been common for researchers to adopt a local ran-
domization approach when interpreting results, and a continuity-based approach
for estimation and inference using flexible parametric methods. The connection be-
tween both approaches, as well as their potential pitfalls, has not been discussed
thoroughly, which has often led to misunderstandings. For example, a common
misconception is that the bandwidth within which nonparametric local polynomial
estimation is conducted is the neighborhood around the cutoff where the treatment
can be interpreted to be as-if randomly assigned, or the region where the linear
model is correct. But in a continuity-based approach, this is not the interpretation
of the bandwidth, as the bandwidth is simply the neighborhood where a polynomial
of a given order (usually one or two) is used to approximate the unknown regression
function. Indeed, in this framework, the shape of this regression function is most
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likely not correctly specified, the underlying distribution of treatment assignment
is not unrelated to the score or potential outcomes, and the potential outcomes are
likely related to the score.

In order for the bandwidth emerging from the continuity-based approach to give
a region where a local randomization interpretation is guaranteed, one must adopt
a local randomization RD framework and impose more assumptions. In most ap-
plications, the continuity-based bandwidth will be too large for such additional as-
sumptions to be plausible, and thus the adoption of a local randomization approach
will lead researchers to choose a smaller neighborhood. In the local randomization
RD framework, one must assume that there is a window around the cutoff where
the treatment is randomly assigned plus an exclusion restriction that prevents the
score from affecting the potential outcomes directly—implying that, in the window
where randomization is assumed, the potential outcomes are constant functions of
the score. Alternatively, as proposed in this paper, one could assume that within this
window there is still a relationship between the score and the potential outcomes,
but that relationship is separable from the effect of the treatment. For example, if
we assume that the potential outcomes are related to the score via a polynomial
model whose coefficients are constant among units within each treatment group,
then we can transform the potential outcomes to remove the score and adopt Fishe-
rian randomization-inference methods on the transformed outcomes. The empirical
implementation of this transformation is comparable to the estimation procedure
in continuity-based large-sample methods, where the outcome is regressed on a
polynomial of the score within a region set by the choice of bandwidth, and only
the difference in intercepts is recorded. Thus, in this sense, our discussion gives
a common framework to compare the continuity-based approach with the local
randomization approach.

In practice, we see both approaches as complementary. The local randomiza-
tion approach provides a helpful robustness test on the by now more conventional
continuity-based approach, and is particularly helpful when the number of obser-
vations near the cutoff is small and the validity of the large-sample approximations
employed by the continuity-based framework is more tenuous.

Our application of these methods to the study of the impact of Head Start on
child mortality illustrates how this robustness analysis can be implemented. In
Figure 4, we summarize the results from both approaches, plotting the point esti-
mate (dots) and 95 percent confidence intervals (bars) as a function of the length
of the window or bandwidth used for estimation. The figure is divided in four
regions showing, respectively, the RD estimation and inference findings from (i)
a local randomization approach based on Fisherian inference with local constant
and local linear transformation in the [−1.1, 1.1] window, (ii) a continuity-based
nonparametric robust local polynomial approach based on a local constant and a
local linear polynomial and MSE-optimal bandwidths (ĥMSE0 = 3.235 for p = 0 and
ĥMSE1 = 6.811 for p = 1), (iii) a continuity-based flexible parametric approach for
fixed manually-chosen bandwidths (ĥFP1 = 9 and ĥFP2 = 18), and (iv) a continuity-
based global parametric approach that uses the entire data. As shown in the figure,
all methods reach approximately the same conclusion that Head Start decreased the
rate of child mortality from HS-targeted causes by about two points, an effect that
can be distinguished from zero at the 5 percent level. In particular, the local ran-
domization approach based on Fisherian inference and the large-sample continuity-
based approach based on bias-corrected robust nonparametric local polynomial
regression, the two recommended methods, yield very consistent results.

Our empirical application thus illustrates a case where the local randomiza-
tion and continuity-based frameworks yield similar results and conclusions. This
may not occur in other applications, so we discuss some of the features of our
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ĥLR = 1.1 and a constant specification. CCT0 and CCT1 correspond to the nonparametric specification
under constant and linear models, with bandwidths ĥMSE0 = 3,235 and ĥMSE1 = 6,811, respectively. LM9
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Figure 4. Point estimates and confidence intervals.

application that are likely responsible for the agreement between the methods. A
crucial assumption of the local randomization framework is that the potential out-
comes are either unrelated to the score in the local window—the exclusion restric-
tion originally adopted in Cattaneo et al. (2015)—or are related to it according to a
known formula that can be used for adjustment—as in Assumption 5. When this as-
sumption fails but continuity of the potential outcomes holds, the continuity-based
framework will lead to valid results but the local randomization framework will not,
and thus the results from both methods are likely to disagree.

In the Head Start application, the temporal separation between the running vari-
able and the outcome enhances the plausibility of both the exclusion restriction and
the weaker version of this restriction stated in Assumption 5, especially in a suffi-
ciently small window around the cutoff. The running variable is the poverty index
calculated using 1960 census results, while the outcome is child mortality between
1973 and 1983. Although a county’s poverty level may be strongly related to contem-
poraneous health outcomes, a county’s poverty in 1960 will be more weakly related to
health and mortality outcomes occurring 13 to 23 years later—a period long enough
for the economic and socio-demographic make-up of the county, and consequently
its health outcomes, to change considerably (and possibly non-systematically). This
weakened relationship between score and outcome implies that, when looking at
a small window around the cutoff where the poverty index in 1960 does not vary
by more than a few percentage points, the underlying assumptions required by the
local randomization framework are more plausible. Indeed, our empirical analysis
(window selection and placebo tests) supports this conclusion.
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More generally, the exclusion conditions required by the local randomization
framework will be most plausible in applications where there are objective factors
weakening the relationship between the score and the outcome near the cutoff. In
such cases, the nonparametric continuity-based framework and the local random-
ization framework are more likely to yield consistent results.

RECOMMENDATIONS FOR PRACTICE

We now offer some general highlights and practical recommendations for the anal-
ysis of RD designs based on our recent work and related work available in the
literature.

First, global parametric methods based on higher-order polynomials tend to be er-
ratic and perform poorly at boundary points, and hence are unlikely to provide cred-
ible and stable results in RD applications. Therefore, we advise against employing
this estimation and inference method when analyzing RD designs in applications.
Furthermore, standard estimation and inference methods, even local to the cutoff,
crucially rely on correct model specification of the regression functions near the RD
discontinuity, and as a result are arbitrary because (i) the bandwidth is chosen in an
ad hoc manner, and (ii) the impact of misspecification error and bandwidth selec-
tion on estimation and inference is (erroneously) disregarded. This implies that the
flexible parametric local least-squares regression methods described in Procedure
1 will also underperform in empirical applications, and thus we do not recommend
them for applied work.

Second, nonparametric robust bias-corrected local polynomial inference meth-
ods account formally for bandwidth selection and misspecification biases. They
also permit using the popular MSE-optimal bandwidth, while providing demon-
strable improvements in estimation and inference. Finally, they require relatively
weak assumptions on the underlying features of the data generating process (e.g.,
smoothness of the unknown conditional expectations of the potential outcomes), but
valid statistical inferences rely on large-sample approximations and extrapolation.
All in all, they provide an excellent trade-off between robustness to restrictive as-
sumptions, such as parametric modeling of the unknown conditional expectations,
and efficiency. Therefore, we recommend these methods as the default approach for
empirical practice. To implement them, the recommended default choices are: (i)
local-linear specification (p = 1), (ii) triangular kernel (K(u) = (1 − |u|)1(|u| ≤ 1)),
(iii) second-generation MSE-optimal bandwidth estimator (h = ĥMSE), and (iv) ro-
bust bias-corrected inference/confidence intervals. This approach leads to an MSE-
optimal point estimator of the RD treatment effect, and valid statistical inference
and/or confidence intervals. In addition, inference after robust bias-correction can
be made optimal, in a distributional sense, if a different bandwidth is used, though
these refinements are more technical and hence beyond the scope of this paper; see
Cattaneo and Vazquez-Bare (2016) for more discussion and further references.

Third, local randomization methods will be useful in a more limited set of applica-
tions. These methods require the stronger assumption that, possibly after parametric
adjustment of the outcome variables, a local randomization assumption holds. This
assumption is stronger than the usual assumption of continuity/smoothness of con-
ditional expectations, and hence it may not hold in all applications, but it can be
empirically falsified as we discussed and illustrated in this paper. The key advantage
of this assumption is that, whenever it holds, it allows for finite-sample exact infer-
ence methods and other useful methods from the analysis of experiments literature.
Therefore, whenever this assumption is believed plausible in empirical applications,
an array of additional estimation and inference methods becomes available, which
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complements the more standard local polynomial methods and gives further ro-
bustness checks and complementary empirical evidence.

In particular, we recommend employing local randomization methods in two
types of scenarios: (i) when the exclusion restriction or Assumption 5 is plausible
(in addition to the other required assumptions), and (ii) when the running variable
is discrete—that is, when multiple observations have the same score value (see also
Dong, 2015; Lee & Card, 2008). As mentioned above, scenario (i) is more likely
to apply in cases where there are objective factors that weaken the relationship
between the score and the outcome. In this scenario, our recommendation is to
use local randomization methods not as primary analysis but rather as a secondary
analysis to establish the robustness of the results obtained using local polynomial
methods within the continuity-based framework. In contrast, the continuity-based
methods are not directly applicable when the running variable is discrete without
further assumptions. In this case, we recommend local randomization methods as
the primary analysis focusing only on the observations closest to the cutoff. When
the score is discrete, the local randomization framework has the advantage that the
choice of window can be avoided, as the smallest possible window is the window that
includes the cutoff point (where all observations are assigned to treatment) and the
score value immediately below it (where all observations are assigned to control).
Moreover, the methods in this Fisherian framework will yield exact inferences even if
the sample size in this window is very small, which may occur in some applications.
This approach changes the estimand of interest, but in cases where the running
variable is inherently discrete, this is expected and reasonable.

To summarize, if the running variable is continuous, we recommend using
continuity-based local polynomial methods for analysis, and local randomization
methods as a robustness check whenever applicable. If the running variable is dis-
crete, we recommend using local randomization methods as the primary analysis
(and possibly continuity-based methods under additional assumptions).

CONCLUSION

We offered a comprehensive discussion of the main inference methods currently
available in the literature for the analysis of RD designs, and applied them to a sub-
stantive case study. Motivated by the influential work of Ludwig and Miller (2007),
who employed global and flexible parametric methods in a continuity-based RD
framework, we reexamined the effect of Head Start on child mortality employing
two main modern inference approaches: nonparametric robust local polynomial in-
ference within a continuity-based RD framework, and finite-sample exact inference
within a local randomization RD framework. We also introduced and discussed
methodological extensions to the latter framework allowing for parametric trans-
formation of outcomes and sensitivity analyses. Applying both frameworks to the
re-analysis of the effect of Head Start on child mortality, we showed that this effect
is strongly consistent across the different methods considered.

An extension of our methods to fuzzy RD designs is given in the Supporting
Information Appendix.17 The methodological results discussed in this paper can
also be used in other related RD settings, including multi-running variable RD
designs (e.g., Papay, Willett, & Murnane, 2011), geographic RD designs (e.g., Keele

17 All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s
website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
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& Titiunik, 2015), and multi-cutoff RD designs (e.g., Bertanha, 2017; Cattaneo et al.,
2016). We do not discuss these extensions here to conserve space.

MATIAS D. CATTANEO is an Associate Professor in the Department of Economics
and in the Department of Statistics at the University of Michigan, 238 Lorch Hall, 611
Tappan Avenue, Ann Arbor, MI 48109-1220 (e-mail: cattaneo@umich.edu).
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APPENDIX

This supplemental appendix reports additional empirical results not included
in the main paper to conserve space. It also discusses the extension of the new
randomization-based methods to the fuzzy RD design introduced in the article.

LOCAL RANDOMIZATION: CONCEPTUAL ISSUES

In this section, we discuss formal definitions and ideas behind the concept of local
randomization in the RD context. In particular, we discuss the interpretation of RD
designs as local experiments building on the arguments in Cattaneo, Frandsen, and
Titiunik (2016) and Sekhon and Titiunik (2017), and making explicit connections to
the local randomization interpretation presented by Lee (2008).

In a very influential piece, Lee (2008) advocated for interpreting RD designs as
local experiments near the cutoff. This view, later expanded in Lee and Lemieux
(2010), argues that in RD designs where units lack perfect control over the score
value they receive, the variation in treatment assignment induced by the RD assign-
ment rule can be interpreted to be as good as randomized. Lee (2008) proposed a
behavioral model in which the assumption of “lack of perfect manipulation of the
running variable” translates into continuity of the units’ unobservable characteris-
tics (or “types”) at the cutoff.

The analogy between RD designs and local experiments has had the beneficial
effect of encouraging researchers to test for equality or “balance” of the distribu-
tion of predetermined covariates between treated and control units at the cutoff,
analogously to the way in which covariate balance is tested in experiments. Such
falsification tests are now common in RD empirical analysis, and have contributed
to the credibility of many RD applications. However, the analogy between RD and
experiments has also created some confusion, in particular about when and where
continuity conditions on potential outcomes and densities of unobservable types
lead to actual experimental conditions for any given finite sample.

The framework in Lee (2008) justifies using the analogy between RD and exper-
iments only heuristically. The reason is that the conditions in the Lee framework
are all based on continuity of relevant functions. These conditions guarantee the
validity of the continuity-based nonparametric approaches described in our main
paper, but do not justify the use of techniques from randomized experiments. Im-
portantly, as discussed by Sekhon and Titiunik (2016), the continuity conditions
in Lee (2008) do not follow by design. By itself, the RD treatment assignment rule
Di = 1(Ri ≥ r̄) imposes no restrictions on the shape or properties of the potential
outcomes regression functions or the density of unobservable characteristics. These
restrictions must be imposed in addition to the RD treatment rule, which is why
the credibility of the RD design ranks below the credibility of actual experiments,
where the key independence condition holds by design.

A contribution of our paper is to give conditions under which RD designs can be
interpreted and analyzed as experiments, not heuristically but rather in a precise
sense. A crucial obstacle to offer a precise analogy between RD designs and experi-
ments is the intermediate role of the running variable, which is absent in an exper-
iment. In most RD applications, the running variable is an important determinant
of the outcomes of interest. For example, in our Head Start application, a county’s
poverty is likely strongly related to other characteristics of the county that affect
the mortality outcomes of interest, such as income, demographic composition, etc.
Moreover, by affecting families’ ability to access health care services, the poverty
index could have a direct effect on child mortality. This illustrates the general fact
that the RD running variable may both correlate with predetermined characteristics
that are related to the outcome of interest, and have a “direct” effect on the potential
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outcomes. The interpretation of RD designs as local experiments in a precise (rather
than heuristic) sense hinges on the assumption that such relationships between the
score and potential outcomes do not exist—the exclusion restriction in Cattaneo
et al. (2015)—or can be removed by adjustment—our Assumption 5 in the main
paper.

Note that in an actual experiment, there is also an intermediate variable akin to
the score in a RD design, but this variable is by definition unrelated to the potential
outcomes. In every experiment, a random chance device is used to assign units to
treatment and control. Often, this device is a pseudo-random number generator in
a computer that assigns a random number to every unit in the study. This number
is then used as the basis for the treatment assignment. For example, one could
assign a treatment with probability 50 percent by assigning a uniform random
number between 0 and 100 to all units, and then assigning the treatment to those
units whose number is above 50. It is clear, however, that the intermediate random
number in an actual experiment is by construction entirely unrelated to the potential
outcomes or any other characteristics of the units. Indeed, in most experiments, the
experimental units do not know what their random number is, they only know
the final treatment/control assignment. See Sekhon and Titiunik (2017) for further
discussion.

In other words, in an actual experiment, the exclusion restriction between the
score and the potential outcomes holds by construction. In contrast, in RD designs,
this exclusion restriction is not guaranteed by the RD assignment mechanism. (In
fact, in our Head Start example, the poverty index is chosen as the running variable
precisely because of its predominant role in determining the overall health-related
and socio-economic outcomes of municipalities, making the exclusion restriction
extremely implausible.) Thus, if researchers wish to analyze RD designs using ex-
perimental methods, they must make this assumption explicitly (or an assumption
such as Assumption 5 that allows for adjustment). Moreover, as discussed at length
by Sekhon and Titiunik (2017), even the assumption that the value of the RD score is
randomly assigned among units near the cutoff is insufficient to guarantee that this
exclusion restriction holds. The reason is that although such random assignment
prevents the score from being related to predetermined characteristics of the units, it
does not preclude the score from affecting the potential outcomes via post-treatment
channels.

To clarify these concepts further, we provide some formalization. Local random-
ization may be analyzed in two alternative frameworks. The first approach assumes
that the potential outcomes are drawn from a super-population, and are therefore
random. This is the framework used in the main paper for discussing continuity-
based methods. In this context, randomization means that the potential outcomes
are statistically independent of treatment assignment. Local randomization occurs
when this independence only holds inside some window.

Definition 1 (Local independence of treatment: super-population).

(Yi(1), Yi(0)) ⊥⊥ Di | Ri ∈ W0, W0 = [r̄ − w, r̄ + w]

Sekhon and Titiunik (2017) point out that this local independence condition does
not imply that the potential outcomes are unrelated to the running variable. (An
equivalent way to define local randomization is to use distribution functions, so
Definition 1 can be recast as P[Di = 1|Yi(1), Yi(0), Ri ∈ W0] = P[Di = 1|Ri ∈ W0].) In
other words, the local independence assumption in Definition 1 is not enough to
guarantee that the exclusion restriction discussed above holds. Indeed, there are
cases where both potential outcomes are functions of R and local independence as
stated in Definition 1 holds (see Sekhon & Titiunik, 2017, for an example).
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A stronger version of the assumption states local independence between potential
outcomes and the score variable, instead of between potential outcomes and the
treatment assignment indicator. This stronger assumption can be stated as

Definition 2 (Local independence of score: super-population).

(Yi(1), Yi(0)) ⊥⊥ Ri | Ri ∈ W0

or equivalently

P[Ri ≤ r |Yi(1), Yi(0), Ri ∈ W0] = P[Ri ≤ r |Ri ∈ W0], r ∈ R. (A.1)

Unlike the local independence condition in Definition 1, the stronger local
independence in Definition 2 implies that E[Yi(d)|Ri, Ri ∈ W0] = E[Yi(d)|Ri ∈ W0],
d = 0, 1, so the exclusion restriction does hold and the conditional expectations are
flat (as functions of Ri) inside the window. Importantly, note that neither Definition
1 nor Definition 2 are satisfied in the Lee (2008) framework, as continuity of condi-
tional expectations or distributions of potential outcomes (or covariates) does not
imply either type of local independence.

In sum, when adopting the super-population local randomization framework as
in Definition 1, the exclusion restriction must be explicitly adopted in addition to
this assumption. Alternatively, researchers can adopt Definition 2, which essentially
assumes that the score variable plays no intermediate role, and hence implies that
the exclusion restriction holds.

The second framework in which local randomization can be analyzed is the Fish-
erian framework that we employ in the main paper. In this context, potential out-
comes are seen as non-random, and the only randomness comes from the treatment
assignment, or in this case, the running variable (which deterministically defines the
treatment in sharp RD designs). In the main paper, we define local randomization
in the following way:

Definition 3 (Local randomization: finite sample). There exists a window W0 = [r̄ −
w, r̄ + w], w > 0, such that the following holds:

1. Non-Random Potential Outcomes. y(d, r) are fixed.
2. Unconfoundedness. P(RW0 ≤ r ; y(d, r)) = P(RW0 ≤ r), for all vectors r ∈ RW0 .
3. Mechanism. P(DW0 = d) is known for all vectors d ∈ DW0 .

Part 2 of this definition imposes a condition equivalent to equation A.1 (Definition
2), but seeing the potential outcomes as non-random. In addition, the finite-sample
version requires knowledge about the probability of receiving treatment, which is
required to calculate all possible values of the treatment assignment vector. These
requirements, together with an assumption on the functional relationship between
the potential outcomes and the running variable (see Assumption 5 in the main pa-
per and also next section) yield a scenario that mimics a randomized experiment. In
other words, the Fisherian finite-sample local randomization framework proposed
by Cattaneo et al. (2015) and extended in the main paper contains an explicit exclu-
sion restriction. As mentioned before, the behavioral model proposed by Lee (2008)
does not justify this interpretation.

RANDOMIZATION P-VALUES: NUMERICAL IMPLEMENTATION

As explained in the main text, the finite-sample exact p-value can be found theoret-
ically by calculating the probability that the test statistic exceeds the value that it
takes in the observed sample. Because the potential outcomes are seen as fixed, the
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only source of randomness is the treatment assignment, and hence this probabil-
ity can be calculated by enumerating all the treatment assignment vectors that are
possible under the known randomization mechanism used to randomly assign the
treatment in the observed sample. For a numerical example, we refer the reader to
Imbens and Rubin (2015).

The formula for the finite-sample exact p-value is:

P
(
T

(
DW0 ,α

0
W0

) ≥ Tobs
) =

∑
d∈DW0

1
(
T

(
d,α0

W0

) ≥ Tobs
) · P(DW0 = d),

where P(DW0 = d) is the known distribution stated in Definition 3 (and Assumption
4 in the main paper).

Even for moderate sample sizes, however, the total number of possible values that
the treatment vector D can take will be prohibitively large. As a simple illustration,
the number of possible values of D for a sample of size 20 with 10 treated units and
10 control units is 184,756, whereas for a sample of 30 with 15 treated units and 15
control units it becomes 155,117,520. Hence, in practice, the finite sample distribu-
tion of the statistic is approximated by drawing a random sample from the known
distribution P(DW0 = d). In the particular case of fixed-margins randomization, this
random sample is obtained by drawing random permutations of the treatment vec-
tor in the observed sample—that is, by sampling the observed treatment assignment
vector without replacement.

In the particular case that P(DW0 = d) follows a fixed-margins randomization, the
randomization-based p-value is obtained in practice with the following procedure:

1. Choose a test statistic T .
2. Using the observed sample, calculate the observed value of the test statistic,

Tobs.
3. Obtain a permutation of the treatment assignment by reshuffling the ones and

zeros in the vector D. Call this permuted vector Dπ
1 .

4. Calculate the value of the test statistic, Tπ
1 , for this permuted treatment assign-

ment Dπ
1 .

5. Repeat steps 3 and 4 a large number of times S, for example S = 1000, to obtain
a vector of length S with the values of the test statistic for all the permutations
of the treatment assignment. Collect all the values of the statistic under each
permutation in a vector Tπ .

6. Obtain the finite sample p-value by calculating the number of times an element
in Tπ exceeds the observed statistic Tobs, and dividing that number by S.

ROSENBAUM’S METHOD FOR CONFIDENCE INTERVALS UNDER INTERFERENCE

The idea in Rosenbaum (2015b) is to look at the magnitude � := T − TU, where T
is some test statistic and TU is the value of this statistic that would be observed
when the treatment is withheld from all units (i.e., in a uniformity trial). This
magnitude asks whether there is a greater tendency for treated subjects to have
higher responses than controls relative to what would have been observed in a
uniformity trial. The quantity TU is unobserved because in practice the uniformity
trial is never performed. However, because in a uniformity trial the null hypothesis
holds by construction, the distribution of TU (which is determined by the treatment
assignment) is known. For some statistics such as the Wilcoxon-Mann-Whitney rank
sum statistic, this distribution can be obtained without reference to the data. More
generally, the distribution can be simulated in the same way in which finite-simple
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p-values are obtained, that is, by permuting the treatment and calculating the value
of the statistic in each step (as described in the previous section). Note that:

P(� > T − cα) = P(T − TU > T − cα)
= P(−TU > −cα)
= P(TU < cα)
= 1 − P(TU ≥ cα)

so if cα is chosen to ensure that P(TU ≥ cα) = α (i.e., cα is the critical value from
the distribution of TU, which is known), we obtain that � > T − cα with probability
1 − α, so the set (T − cα; ∞) can be seen as a 1 − α level confidence interval for
�. This confidence set can be constructed using the known distribution of TU and
the observed value of the statistic T . In practice, the critical value cα is obtained
by setting a value of α, simulating the distribution of the statistic under the null,
and finding the number cα such that the proportion of cases in which the statistic
falls above cα is equal to α. The value of T in the confidence interval simply comes
from the observed value of the statistic in the sample. As an illustration, if T = 10
and P(TU ≥ 4) = 0.05 (so that α = 0.05 and c0.05 = 4) we have that P(� > 6) = 0.95
so we can assert that � > 6 with 95 percent confidence. This reasoning extends
straightforwardly to the two-sided case described in the paper.

ADDITIONAL EMPIRICAL RESULTS

In this section, we present additional empirical results for the Head Start applica-
tion. First, we give descriptive statistics for the full sample as well as for different
subsamples of counties with score near the RD cutoff. Second, we perform several
formal falsification tests to provide empirical evidence supporting the validity of
the RD design. Finally, we offer further empirical results using nonparametric local
polynomial and local randomization methods.

Basic Descriptive Statistics

Figures A1 and A2 show histograms of the running variable and the outcome of
interest for the full sample as well as for different windows around the cutoff.
Visually, the running variable does not seem to have a discontinuity around the
cutoff; this is confirmed by the falsification tests conducted below. The plot for the
outcome reveals a big mass point at zero, both outside and inside the window. Even
conditional on being positive, the outcome variable concentrates in low values.

Descriptive statistics for these two variables can be seen in Table A1. The poverty
index ranges roughly from 15 to 93 with a mean of 33.6. We can see that the cutoff
is located close to the 90th percentile of the score distribution, as expected since
the program implementation (RD design) is based on a fixed number of the poorest
U.S. counties. On the other hand, the outcome variable (child mortality) has a mean
of 2.25 but a median equal to zero, which is consistent with the strong asymmetry
seen in Figure A3.

Finally, Tables A2 through A5 report difference-in-means of the outcome variable
and pre-intervention covariates for the full sample and different windows around
the cutoff.

Falsification Tests: Additional Results

To check for continuity away from the cutoff on the outcome variable, Figure A4
presents two RD plots constructed using the Integrated Mean Square Error (IMSE)
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(a) Score (cutoff = 59.1984). (b) Score inside window (h = 9).

(c) Outcome (d) Outcome inside window (h = 9)        

(e) Outcome excluding zeros (f) Outcome excluding zeros (h = 9)

Notes: the left column shows the histogram of the score (poverty index), the outcome (mortality, ages five
to nine, HS-related causes) and the outcome conditional on being positive for the full sample. The right
column replicates the same histograms but inside a window around the cutoff with bandwidth h = 9.
The dashed line indicates the cutoff (59.1984).

Figure A1. Running variable and outcome variable.

optimal number of disjoint bins to approximate the underlying regression functions,
under repeated sampling. Panel (a) employs evenly spaced bins over the support of
the running variable, while panel (b) employs quantile spaced bins. The idea is to
compare a global polynomial fit (smooth approximation) to a local sample-means
fit over disjoint bins (discontinuous approximation), with the goal of identifying
possible discontinuities away from the cutoff. These optimal RD plots are fully
data-driven and follow the recent results in Calonico et al. (2015). The figure shows
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(a) Score inside window (h = 3)

(c) Outcome inside window (h = 3) (d) Outcome inside window (h = 1)

(b) Score inside window (h = 1)

(e) Outcome excluding zeros (h = 3) (f) Outcome excluding zeros (h = 1)

Notes: the left column shows the histogram of the score (poverty index), the outcome (mortality, ages
five to nine, HS-related causes) and the outcome conditional on being positive inside a window with
bandwidth h = 3. The right column replicates the same histograms but inside a window with bandwidth
h = 1. The dashed line indicates the cutoff (59.1984).

Figure A2. Running variable and outcome variable (cont.)

a fairly consistent picture for the control units (Ri < r̄ = 59.1984), where both the
global smooth polynomial fit and the local discontinuous sample means exhibit a
very similar behavior. For the treatment group (Ri ≥ r̄), on the other hand, the two
approaches show some noticeable differences that may require further analysis. We
do not find any graphical or formal evidence of additional discontinuities over the
support of the running variable.
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Table A1. Descriptive statistics for running variable and outcome.

Poverty index Mortality, ages 5–9, HS-targeted

Mean 36.787 2.254
Standard deviation 15.350 5.726
Min 15.209 0.000
10th percentile 18.737 0.000
25th percentile 24.139 0.000
50th percentile 33.615 0.000
75th percentile 47.426 2.828
90th percentile 59.765 6.658
Max 93.072 136.054
Obs 2,804.000 2,783.000

Nonparametric Local Polynomial Methods

A natural robustness check when implementing RD methods is to report estimation
and inference results for different bandwidth choices. Table A6 shows the results for
four different bandwidth selection methods: ĥCER corresponds to the coverage-error-
optimal bandwidth from Calonico, Cattaneo and Farrell (2017), ĥMSE corresponds to
the MSE-optimal bandwidth used in the paper and suggested by Calonico, Catta-
neo, and Titiunik (2014), and ĥFP1 and ĥFP2 correspond to the bandwidths used in
the flexible parametric approach. All the results are provided for three polynomial
models: constant, linear, and quartic.

In all models except for the constant one (in which they are equal by construc-
tion), the CER-optimal bandwidth is smaller than the MSE-optimal bandwidth. Nev-
ertheless, the main empirical results do not change dramatically for the different
bandwidths for the constant and linear models, revealing negative and statistically
significant results. The point estimates roughly range from around −2.4 to −1.0, all
of them significantly different from zero at 5-percent level. In addition, Tables A7
and A8 report details on the placebo tests on the pre-intervention covariates, which
also show very stable and robust results, most of them revealing large p-values (with
a few exceptions that could be false positives due to multiple testing issues). The
quartic model, on the other hand, shows generally larger and unstable results. This
model, however, is not recommended in practice, and previous work has shown that
high-order polynomials do not perform well in these contexts (see e.g., Gelman &
Imbens, 2014).

In sum, our findings using nonparametric local polynomial methods do not seem
to be sensitive to the choice of the bandwidth, and appear to be quite robust.

Local Randomization Methods

In this section, we explore how the results obtained under the local randomiza-
tion approach are affected by different choices of the window length. For example,
different data-driven selected lengths can be obtained by using different statistics
for the balance tests. Figure A5 shows the minimum p-value for covariate bal-
ance tests using the Kolmogorov-Smirnov, t-test, rank sum, and Hotelling statis-
tics. The resulting chosen windows in these cases have half-length equal to w = 1.1,
w = 1.3, w = 1.5, and w = 2.7, respectively. The smallest window corresponds to
the Kolmogorov-Smirnov test, which is intuitive because the Kolmogorov-Smirnov
is more demanding as it requires the whole distribution to be balanced between

Journal of Policy Analysis and Management DOI: 10.1002/pam
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(a) Ages 5–9, HS-related causes, post-HS (b) Ages 5–9, injuries, post-HS

(c) Ages 5–9, all causes, post-HS (d) Ages 25+, HS-related causes, post-HS

(e) Ages 5–9, injuries, post-HS (f) Ages 5–9, HS-related causes, pre-HS

(g) Whites, Ages 5–9, HS-related causes,
post-HS

(h) Blacks, Ages 5–9, HS-related causes,
post-HS

Notes: Data-driven RD plots using Mimicking Variance Optimal Number of Bins. See Calonico, Cattaneo,
and Titiunik (2015) for details.

Figure A3. RD Plots Main and Placebo Outcomes.
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(a) Evenly Spaced Bins
J− = 5 ; J+ = 6

(b) Quantile Spaced Bins
J− = 7 ; J+ = 6

Notes: (i) solid blue lines depict 4th order polynomial fits using control and treated units separately, and
(iv) dots depict sample average of outcome variable within each bin.

Figure A4. RD Plots using IMSE-optimal Approximation, Head Start Data.

groups. The window chosen in the main paper is therefore the most conservative
one.

Table A9 shows the inference results for different window lengths, including the
four chosen using the four statistics mentioned above and w = 0.9, which is an even
more conservative choice than the ones obtained via balance tests. For the model
without adjustment, the point estimates range between around −1.6 and −3.1, all
of them statistically significant at the 5-percent level. Additionally, the placebo tests
yield mostly insignificant results, with only few exceptions. Hence, the results seem
quite robust to different window lengths.

For the linear adjustment, the results are also reasonably robust but less stable in
terms of point estimation magnitudes. Specifically, the point estimates vary from
around −1 to −4, with increasing p-values for larger windows. Some placebo tests
reveal low p-values for the larger windows, where the local randomization assump-
tion is less plausible. To better understand the effects of linear transformations on
the outcome variable, Figure A6 shows the scatter plot of the outcome of interest
(child mortality post-HS) against the re-centered running variable, together with the
linear adjustment model for w = 1.1 (panel a) and w = 1.3 (panel b) transformations.
The graph clearly shows that the change in the results when increasing the window
length from 1.1 to 1.3 is mostly driven by a single observation with a very high value
(i.e., an outlier). Given the low number of observations used near the cutoff, the fit-
ted slope is very sensitive to outliers and this might make the estimates and p-values
change abruptly, a phenomenon that affects the constant model less severely. For
this reason, the linear transformation in the local randomization framework should
be used with caution, and should be accompanied by a thorough graphical analysis
and robustness checks (specially when the number of observations in the chosen
window is very small).

For completeness, in Table A10 we also report analogous results using large-
sample (instead of randomization-based) inference methods.

Summary of Empirical Results

Finally, for completeness, the information used to construct Figure 4 in the main
paper is given in Table A11.
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(a) Kolmogorov-Smirnov. (b) Rank sum.

(c) t-test. (d) Hotelling.

Notes: minimum p-value as a function of window length for Kolmogorov-Smirnov, t-test, rank sum and
Hotelling statistics.

Figure A5. Window selection.

EXTENSION TO FUZZY RD DESIGNS

In a fuzzy RD design, treatment assignment is no longer a deterministic function of
the score because of imperfect compliance. Let d(r) denote the vector of potential
treatment status as a function of r. The observed treatment status is D = d(R). Let
Zi = 1(Ri ≥ 0) be the treatment assignment for unit i and collect these variables in
a vector Z taking values z ∈ D , which will be used as an instrument for D.

In principle, the potential outcomes are a function y(d, r, z). A key assumption in
experiments with imperfect compliance, however, is that assignment to treatment
does not have a direct effect on potential outcomes—only taking or not taking the
treatment should have an effect, not the assignment itself. In our context, this means
that being above the cutoff can only affect potential outcomes through r and by
changing the treatment status d. This is usually known as the exclusion restriction
in instrumental variables models (see, e.g., Imbens & Rubin, 2015). Note that this
exclusion restriction is different from the exclusion restriction mentioned above: the
restriction in instrumental variables model refers to the exclusion of the treatment
assignment indicator Z from the potential outcomes, while the previous exclusion
restriction referred to the exclusion of the score variable R. We state this restriction
as follows:

Assumption 1 (Finite Population and Assignment Mechanism). There exists a win-
dow W0 = [r , r] with r < 0 < r such that the following holds:
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(a) Linear adjustment forw= 1.1 (b) Linear adjustment forw= 1.3.

Notes: panel (a) shows the linear adjustment for the outcome of interest with w = 1.1; panel (b) shows
the same graph but for w = 1.3. The figure reveals that the difference in point estimates and inference
between the two cases is largely driven by a single outlier.

Figure A6. Sensitivity of linear adjustment model.

1. y(d, r, z) are fixed.
2. P(RW0 ≤ t; Y(d, r, z)) = P(RW0 ≤ t) for t ∈ RW0 .
3. P(ZW0 = z) is known for all z ∈ DW0 .
4. For any pair t, t such that r < t < 0 < t < r , P(Di = 1 | Ri = t) > P(Di = 1 | Ri =

t) for all i with Ri ∈ W0.

Assumption 1 requires no selection and that the researcher know the probability
distribution of the treatment assignment. The only difference is the addition of
condition (4), which states that the probability of treatment below the cutoff is
strictly lower than the probability of being treated above the cutoff. Note that in a
sharp design this condition holds automatically, since the probability of treatment
is an indicator function and jumps from zero to one at the cutoff.

Assumption 2 (Exclusion Restriction on the Treatment Assignment). y(d, r, z) =
y(d, r) for all d.

Assumption 2 allows us to drop the argument z from the potential outcomes,
which become y(d, r) as before.

Assumption 3 (Transformed Outcomes). For all i such that Ri ∈ W0, the following
holds:

1. There exists a function φ : Y × R × D → R such that the adjusted potential out-
comes only depend on r through z, that is,

φ(yi(d, r), d, r) = ỹi(d, z) ∀ r ∈ RW0 , d ∈ DW0

2. The potential treatment status only depends on z, that is,

d(r) = d(z) ∀ r ∈ RW0

Finally, we assume that SUTVA holds for both the adjusted potential outcomes
and treatment status.

Assumption 4 (Local SUTVA). For all i with Ri ∈ W0,

1. di(z) = di(zi) for all z ∈ DW0

2. ỹi(d) = ỹi(di) for all d ∈ DW0 .
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Assumption 4 restricts the values of the treatment status to two, di(1) and di(0),
and the values of the potential outcomes to two, namely, ỹi(0), and ỹi(1).

Under the null hypothesis that τ = τ0, the adjusted responses Ỹi − τ0 Di are fixed
and unrelated to the instrument (Imbens & Rosenbaum, 2005). As long as the
distribution of the instrument is known, so is the distribution of any statistic
T(ZW0 , ỸW0 − τ0DW0 ) and hence exact p-values can be obtained from the random-
ization distribution as discussed previously.

A possible statistic for hypothesis testing is the difference in means for units with
Zi = 1 and Zi = 0:

TAR =
∑

i∈I0
(Ỹi − τ0 Di)Zi∑

i∈I0
Zi

−
∑

i∈I0
(Ỹi − τ0 Di)(1 − Zi)∑

i∈I0
(1 − Zi)

where, as before, I0 = {i : Ri ∈ W0}. This statistic corresponds to the difference in
the intercepts from two (reduced-form) regressions of Yi − τ0Ti on the score above
and below the cutoff. We label it AR for Anderson-Rubin, since even though it is
not technically the Anderson-Rubin statistic, it captures the idea of using the re-
duced form coefficients. In practice, this estimator can be obtained by running a
regression of Yi − τ0 Di on Zi , Ri and an interaction term, with TAR simply being the co-
efficient corresponding to Zi . See Cattaneo et al. (2016) for further implementation
details.
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