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Abstract. We introduce the rdlocrand package, which contains four commands
to conduct finite-sample inference in regression discontinuity (RD) designs under a
local randomization assumption, following the framework and methods proposed
in Cattaneo, Frandsen, and Titiunik (2015, Journal of Causal Inference 3: 1–24)
and Cattaneo, Titiunik, and Vazquez-Bare (2016, Working Paper, University of
Michigan, http://www-personal.umich.edu/∼titiunik/papers/
CattaneoTitiunikVazquezBare2015 wp.pdf). Assuming a known assignment mech-
anism for units close to the RD cutoff, these functions implement a variety of
procedures based on randomization inference techniques. First, the rdrandinf

command uses randomization methods to conduct point estimation, hypothesis
testing, and confidence interval estimation under different assumptions. Second,
the rdwinselect command uses finite-sample methods to select a window near the
cutoff where the assumption of randomized treatment assignment is most plausible.
Third, the rdsensitivity command uses randomization techniques to conduct a
sequence of hypothesis tests for different windows around the RD cutoff, which
can be used to assess the sensitivity of the methods and to construct confidence
intervals by inversion. Finally, the rdrbounds command implements Rosenbaum
(2002, Observational Studies [Springer]) sensitivity bounds for the context of RD

designs under local randomization. Companion R functions with the same syntax
and capabilities are also provided.

Keywords: st0435, rdrandinf, rdwinselect, rdsensitivity, rdrbounds, regression dis-
continuity designs, quasi-experimental techniques, causal inference, randomization
inference, finite-sample methods, Fisher’s exact p-values, Neyman’s repeated sam-
pling approach

1 Introduction

Conventional inference methods for regression discontinuity (RD) designs use nonpara-
metric local polynomial techniques, rely on large-sample approximations, and pro-
vide estimators and inference procedures for the (super) population under repeated
sampling assumptions. For example, see Hahn, Todd, and van der Klaauw (2001) and
Calonico, Cattaneo, and Titiunik (2014b) for treatment-effect estimation and inference
and McCrary (2008) and Cattaneo, Jansson, and Ma (2016b) for manipulation testing.
Reviews and further references on flexible parametric and nonparametric approaches to
analyzing RD designs are given by Imbens and Lemieux (2008), Lee and Lemieux (2010),
Calonico, Cattaneo, and Titiunik (2015a), Keele and Titiunik (2015), and Skovron and
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332 RD designs under local randomization

Titiunik (2015). These approaches rely on smoothness assumptions leading to nonpara-
metric identification of, and valid inference procedures for, RD treatment effects at the
cutoff in the population.

An alternative approach to analyzing RD designs relies on the idea of local random-
ization, which postulates that treatment assignment may be regarded as (or at least
approximated by) a known randomization mechanism near the RD cutoff (Lee 2008). In
other words, in this approach, the units closest to the cutoff are viewed as being part
of a local randomized experiment. Building on this intuitive idea, Cattaneo, Frand-
sen, and Titiunik (2015) and Cattaneo, Titiunik, and Vazquez-Bare (2016) develop a
framework and methodological tools to analyze RD designs under a local randomization
assumption. The approach is based on methods from the classical literature on the
analysis of experiments (Rosenbaum 2002, 2010; Imbens and Rubin 2015), where the
(possibly transformed) potential outcomes are regarded as fixed, and inference is based
on the randomization distribution of the treatment assignment. This alternative infer-
ence approach is useful in many cases, including when the dataset of interest is small,
the running variable is not continuous, matching techniques are used, or multiple RD

cutoffs are analyzed. For a geographic RD example applying some of these ideas, see
Keele, Titiunik, and Zubizarreta (2015).

In this article, we introduce the rdlocrand package to conduct finite-sample infer-
ence in RD designs using randomization inference and related techniques under a local
randomization assumption. This package contains the following four commands:

1. rdrandinf. This command implements several methods from the literature on
the analysis of experiments, including Fisher’s exact p-values and tests, Neyman’s
repeated sampling inference, and related methods. These methods rely on finite-
sample exact techniques (that is, randomization inference methods) and on par-
ticular large-sample approximations. The command offers point estimation, hy-
pothesis testing, and confidence interval procedures under different assumptions,
allowing in particular for regression-based outcome transformations.

2. rdwinselect. This command uses finite-sample (but also large-sample) meth-
ods to select a window near the cutoff where the local randomization assumption
is most plausible, under some intuitive conditions. This command is called by
the rdrandinf command to select a data-driven window around the cutoff where
inference is conducted, but rdwinselect can also be used as a stand-alone com-
mand for analysis and falsification of RD designs under a local randomization
assumption.

3. rdsensitivity. This command uses randomization inference methods to conduct
a sequence of hypothesis tests for different windows around the RD cutoff, which
can be used to assess the sensitivity of the methods and to construct confidence
intervals by inversion.

4. rdrbounds. This command implements randomization-based sensitivity analysis
(Rosenbaum 2002) in the context of RD designs under local randomization.
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Altogether, the rdlocrand package offers a complete and systematic analysis of RD

designs under a local randomization assumption and some related conditions. These
finite-sample methods can be used for empirical analysis of RD designs under a set of
assumptions that are different from the conventional assumptions in the nonparametric
literature (for example, randomization-based methods allow for discrete running vari-
ables). In addition, the procedures discussed here can be used as a robustness check on
the conventional inference methods that use large-sample approximations.

In the remainder of this article, we provide methodological, practical, and empirical
introductions to these commands. First, we briefly review the main theoretical concepts
underlying the methods implemented (section 2). Second, we provide syntax and a
brief explanation of the functionalities of each of the four commands (sections 3, 4, 5,
and 6). Finally, we present a detailed empirical analysis replicating the empirical results
originally reported in Cattaneo, Frandsen, and Titiunik (2015), showing some of the
main options implemented by these commands (section 7). We briefly conclude in
section 8.

For related Stata (and R) commands (rdrobust, rdbwselect, and rdplot) provid-
ing graphical presentation, estimation, and inference in RD designs using local poly-
nomial techniques, see Calonico, Cattaneo, and Titiunik (2014a, 2015b). In addition,
for Stata (and R) commands (rddensity and rdbwdensity) implementing manipula-
tion testing based on discontinuity in density using local polynomial techniques, see
Cattaneo, Jansson, and Ma (2016a).

2 Overview of methods

This section briefly describes the statistical framework and methods for RD designs under
local randomization. The framework and methods considered here were introduced
in Cattaneo, Frandsen, and Titiunik (2015) and Cattaneo, Titiunik, and Vazquez-Bare
(2016)—we refer the reader to these references for further details. For a review on
randomization inference and related experimental and quasi-experimental methods, see
Rosenbaum (2002, 2010) and Imbens and Rubin (2015).

2.1 Statistical framework

We start by introducing some notation. The sample consists of n units indexed by
i = 1, . . . , n. The running variable, score, or index is denoted by Ri, and the treat-
ment indicator is Di. In a sharp RD design, Di = �(Ri ≥ r), where r is a fixed and
known cutoff and �(·) is the indicator function. Let D be the n × 1 vector collect-
ing the observed treatment assignment for the n observations, and analogously for R;
that is, D = (D1, D2, . . . , Dn)

′ and R = (R1, R2, . . . , Rn)
′. The potential outcome of

unit i under a vector of scores r and a vector of treatment assignments d is yi(d, r)
taking values in a set Y. For example, Y = {0, 1} if the potential outcomes are bi-
nary, Y = [0,∞) if they are nonnegative, and so on. The support of D is denoted by
supp(D) := Ω and, similarly, supp(R) := R. We collect these potential outcomes in a
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vector y(d, r) = {y1(d, r), y2(d, r), . . . , yn(d, r)}
′. Finally, the vector of observed out-

comes is Y = y(D,R), which is a random variable by virtue of R and, as a consequence,
D being random. Throughout, we use lowercase to denote fixed, nonrandom variables
and uppercase to denote random variables.

The local randomization framework for RD designs is characterized by two features:
i) a known randomization (or treatment assignment) mechanism in some region or win-
dow around the cutoff and ii) an exclusion restriction on the (transformed) potential
outcomes. More precisely, the first condition is related to the existence of a window
W0 = [r − w, r + w], w > 0, around the cutoff in which, as in a randomized controlled
experiment, treatment assignment of units with Ri ∈ W0 follows a known distribution:
the probability law �(DW0

= d) is known, where DW0
is the subvector of D correspond-

ing to the observations with Ri ∈ W0 and d ∈ {0, 1}nW0 with nW0
=

Pn
i=1 �(Ri ∈ W0)

denoting the number of units in W0.

For implementation purposes, the rdlocrand command considers two types of ran-
domization mechanisms. In the first one, called fixed-margins randomization or com-
plete randomization, each treatment assignment chooses a given number of treated units
among the nW0

units in W0. Thus, in applications, the probability distribution of DW0

is given by

�(DW0
= d) =

�
nW0

mW0

�−1

∀d ∈ Ω0

where mW0
=

Pn
i=1 �(Ri ∈ W0)Di is the number of treated units and Ω0 is the set

of nW0
-dimensional vectors with exactly mW0

ones. In the second assignment mecha-
nism, units are assigned to treatment following independent Bernoulli trials with some
probability q ∈ (0, 1), so that

�(DW0
= d) =

nW0Y

i=1

qdi(1− q)1−di
∀d ∈ Ω0

where now Ω0 = {d ∈ {0, 1}nW0 }. The parameter q is often unknown but can be
easily estimated, for example, as the proportion of treated units in the window; that is,
bq = mW0

/nW0
.

The second feature of the local randomization framework is a model or, more pre-
cisely, an exclusion restriction for the (transformed) potential outcomes. The idea is
that the potential outcomes can be transformed to eliminate the direct dependence
between potential outcomes and the running variable, that is, that there exists some
transformation φ(·) of the potential outcomes such that

φ(y(d, r),d, r) = ey(dW0
) ∀ r ∈ R

In practice, this assumption is likely to be more plausible for units within the window
W0. In the end, the goal is to transform the (potential) outcomes so that eyi(d, r) =
eyi(dW0

) for all units with score in W0, so their potential outcomes are not a function of
the score except through the treatment indicator. In some applications, the transforma-
tion is not needed [that is, φ(·) is the identity function and yi(d, r) = yi(d) directly], but
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in other cases, the researcher may want to incorporate some parametric relationship.
This restriction, for example, could reflect the standard practice in the RD literature of
fitting a lower-order polynomial regression at each side of the cutoff.

For the outcome transformation, rdlocrand considers polynomial transformations
with different centerings. Specifically, all the commands in the rdlocrand package allow
for a transformation of (potential) outcomes based on a polynomial model of order p of
the form

yi(d, r) =

(
αi(dW0

) + β01(ri − r0) + β02(ri − r0)
2 + · · ·+ β0p(ri − r0)

p if di = 0

αi(dW0
) + β11(ri − r1) + β12(ri − r1)

2 + · · ·+ β1p(ri − r1)
p if di = 1

for all i such that Ri ∈ W0, where r1 and r0 are two evaluation points set in advance;
natural choices are i) the cutoff point (r1 = r0 = r) and ii) the center of the control
(r0 = r − w/2) and treatment (r1 = r + w/2) regions within W0. Of course, in the
absence of a polynomial transformation (that is, β0j = 0 = β1j for j = 1, 2, . . . , p), we
obtain the natural exclusion restriction

yi(d, r) = αi(dW0
) =: eyi(dW0

)

for all units with their score inside W0. The polynomial transformation assumption
allows for the potential outcomes to have some direct dependence on the score, although
this assumption is of course strong and very specific. In this case, the transformed
potential outcomes are

eyi(dW0
) :=

(
yi(d, r)− β01(ri − r0)− · · ·− β0p(ri − r0)

p = αi(dW0
) if di = 0

yi(d, r)− β11(ri − r1)− · · ·− β1p(ri − r1)
p = αi(dW0

) if di = 1

for all i such that Ri ∈ W0. Thus the transformed potential outcomes isolate the portion
of the potential outcome that is related to the treatment but unrelated to the particular
value taken by the running variable. The coefficients βdj (d = 0, 1 and j = 1, 2, . . . , p)
are analytically computed by least squares.

In the model above, the transformed potential outcomes depend only on dW0
, and the

probability law of DW0
is known for all units with score in W0. Therefore, among other

possibilities, randomization inference can be used for hypothesis testing and confidence
interval construction. As discussed below, we will need to further restrict the model
(that is, impose the so-called stable unit treatment value assumption, or SUTVA). Before
discussing how to perform inference in this setting, we describe our window-selection
method.

2.2 Window selection

Cattaneo, Frandsen, and Titiunik (2015) propose a data-driven method to find the win-
dow W0 where the local randomization assumption is assumed to hold. The idea is that
because treatment assignment is “as if random” inside the window, the distribution
of preintervention covariates and postintervention unaffected-by-treatment outcomes
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should be the same between treated and control units. This observation is closely re-
lated to the ideas underlying balance tests in the experimental and nonexperimental
literature. For the procedure to be useful, the distribution of these covariates for con-
trol and treatment units should be unaffected by the treatment within W0 but should
be affected by the treatment outside the window.

To describe the approach, we will let x be the n×k matrix collecting the k covariates
and, for an arbitrary windowW , xW be the subvector corresponding to units with scores
inside the window W . Then, the window-selection algorithm is the following:

1. Set an initial “small” window, cW1.

2. For each of the k covariates, conduct a test of the null hypothesis of no effect of
the treatment on the covariate using some test-statistic T (x�W1

,R�W1
). Take the

minimum p-value from the k tests.

3. If the minimum p-value obtained in step 2, p1, is less than some prespecified level—
for example, 0.15—the initial window was too large;1 decrease the initial window
and start over. If the initial window cannot be decreased (for example, because a
smaller window would contain too few data points), conclude that W0 cannot be

found. Otherwise, if p1 ≥ 0.15, choose a larger window cW2 ⊃
cW1, and go back to

step 2 to calculate p2. Repeat the process until the minimum p-value is less than
0.15. The selected window is the largest window such that the minimum p-value
is larger than or equal to 0.15 in that window and in all windows contained in it.

The resulting window, cW , is the estimate of W0. The idea of this algorithm is to
choose the largest window (or one of the largest windows) in which all the covariates
are balanced. This window-selection procedure is implemented by rdwinselect using
both randomization inference and large-sample methods discussed next. We emphasize
that although this procedure performs multiple hypothesis tests, we do not use multiple
testing adjustments because the goal is to be conservative and reject the null often so
that the chosen window is small.

2.3 Randomization inference

The framework in section 2.1 provides all the necessary information to test the sharp
null hypothesis of no treatment effect using randomization inference methods. More
precisely, consider the following hypothesis:

H0 : αi(dW0
) = αi(d

′
W0

) ∀i : Ri ∈ W0 and ∀dW0
,d′

W0

This hypothesis is usually known as the sharp null hypothesis of no treatment effect or
Fisher’s null hypothesis. In the randomization inference literature, a hypothesis is said

1. In some cases, this could also happen if the initial window was too small because balance tests may
be unreliable in these cases. We recommend starting with initial windows of at least 10 observations
at each side of the cutoff.
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to be “sharp” if it allows the researcher to impute all missing potential outcomes. Under
this hypothesis, we have eyi(dW0

) = αi(dW0
) for all units inside the window W0; thus all

the potential outcomes can be observed. Collecting all observed transformed outcomes
for units in W0 in the vector eYW0

(DW0
) and all αi(dW0

) in W0 in the vector α0
W0

,

under H0, we have that eYW0
= α0

W0
. But α0

W0
is constant under all realizations of D.

Therefore, any test-statistic T (DW0
, eYW0

) satisfies T (DW0
, eYW0

) = T (DW0
,α0

W0
) un-

der the sharp null hypothesis, implying that its null distribution is known—because the
only randomness in T (DW0

,α0
W0

) originates in the treatment assignment mechanism,
D, whose distribution is assumed to be known.

An exact p-value for an observed value of the statistic Tobs can be easily computed
as

�

n
T

�
DW0

, eYW0

�
≥ Tobs

o
=

X

d∈Ω0

�

n
T

�
DW0

, eYW0

�
≥ Tobs

o
� (DW0

= d)

where �(DW0
= d) follows a known distribution, as mentioned above. In practice,

the cardinality of Ω0 will be very large even for relatively small sample sizes; thus the
p-value is approximated by drawing treatment assignment vectors from Ω0 at random.
The larger the number of repetitions, the more precise the approximation will be.

A common simplifying assumption in this context is the SUTVA; that is, unit i’s
(transformed) potential outcome depends only on unit i’s score and treatment assign-
ment; that is, eyi(d, r) = eyi(di, ri) for all i such that Ri ∈ W0. Although the main ideas
and results discussed here do not require this condition, in practice, the outcome trans-
formation model may be hard or impossible to implement without restrictions on the
degree of interference between units. Thus our implementations effectively use SUTVA

whenever a transformation is used. Section 2.5 discusses ways to relax this assumption
when interference between units is suspected. SUTVA implies that each unit has exactly
two transformed potential outcomes, eyi(1) and eyi(0).

After imposing SUTVA, we can apply the same reasoning above to test any sharp
null hypothesis. For example, if one is willing to assume that the treatment effect is an
additive constant τ , one can test whether τ = τ0:

H0 : αi(1) = αi(0) + τ0 ∀i : Ri ∈ W0

The idea is that in this case, eyi = eyi(0)+ τ0Di; hence, eyi − τ0Di does not vary with Di.

The null hypothesis is then tested using T (DW0
, eYW0

− τDW0
).

For the rest of this article, we impose SUTVA to simplify the discussion and presen-
tation, except where we note explicitly otherwise.

2.4 Statistics and confidence intervals

As we will illustrate in section 7, the commands presented implement up to four dif-
ferent statistics: difference in means (DM), Kolmogorov–Smirnov (KS), Wilcoxon rank



338 RD designs under local randomization

sum (RS), and Hotelling’s T 2 statistics. The last statistic is available only for win-
dow selection (rdwinselect) but not for RD inference (rdrandinf) or sensitivity anal-
ysis (rdsensitivity, rdrbounds). The formulas below are written in terms of the
outcome variable (adjusted by the null value τ0 when required); when implementing
rdwinselect, one applies the same formulas using each covariate xij (j = 1, . . . , k) as
an outcome instead of eyi − τ0Di.

In addition, under appropriate assumptions, different types of confidence intervals
can be constructed using randomization inference methods under the local randomiza-
tion assumption. In this section, we review two methods implemented in the commands
rdsensitivity (under a treatment-effect model) and rdrandinf, allowing for the pres-
ence of interference.

DM

The DM statistic is calculated as

TDM =
1

mW0

X

i:Ri∈W0

�
eYi − τ0Di

�
Di −

1

nW0
−mW0

X

i:Ri∈W0

�
eYi − τ0Di

�
(1−Di)

with mW0
=

P
i:Ri∈W0

Di and nW0
−mW0

=
P

i:Ri∈W0
(1−Di) as defined above.

Unlike the other estimators that will be discussed, the DM has the appealing feature
that it provides a point estimate of the average treatment effect (ATE) without imposing
any restrictions on how the treatment effect varies across units. Moreover, one can easily
show that this statistic is unbiased for the ATE when the treatment assignment follows
a fixed-margin randomization scheme or Bernoulli trials. Hence, TDM plays the double
role of test statistic and point estimate of the ATE. One should keep in mind, however,
that the null hypothesis being tested is that the treatment effect is zero for all units,
which is much stronger than the hypothesis that the ATE is zero.

In terms of implementation, rdlocrand calculates TDM as the estimate of a fully
interacted pth-order polynomial regression using observations inside the window, which
is simply a regression on the indicator of being above the cutoff Di and a polynomial on
Ri allowed to differ for units above and below the cutoff. Note that this is equivalent
to running two separate regressions of the outcome on a polynomial of Ri, one above
and the other below the cutoff, and taking the difference in the intercepts. In this case,
p = 0 would correspond to a simple DM (that is, no model transformation).

KS

The KS statistic is obtained as

TKS = sup
y∈Y

��� bF (y|D = 1)− bF (y|D = 0)
���

where bF (y|D = 1) and bF (y|D = 0) are estimates of the distribution function of the
transformed outcome for the treated and control units, respectively. When p = 0, that
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is, Yi = eYi (that is, there is no transformation), this statistic is calculated using the
ksmirnov Stata command directly. Otherwise, when p > 0, the statistic is obtained
in two steps. First, Yi − τ0Di is regressed on a pth-degree polynomial separately for
treated and control units; for each regression, the estimate of the intercept is added
to the residuals. The resulting values are the transformed outcomes for treated and
controls, eYi. Second, the KS statistic is constructed using eYi − τ0Di.

Wilcoxon RS

This statistic is the studentized version of the Wilcoxon RS statistic, computed as

TRS =
T − E(T )p

V(T )

where T is the sum of ranks for the control group (Wilcoxon’s statistic) and E(T ) and
V(T ) are the expectation and variance of the Wilcoxon RS statistic. This is calculated
using the ranksum command. As for the KS statistic, when p > 0, the statistic is
calculated using the transformed outcomes, eYi, as mentioned above.

Hotelling’s T2

The window-selection procedure described above involves performing k hypothesis tests,
one for each covariate, and choosing the minimum between the k resulting p-values. The
rdwinselect command also allows the user to perform a joint test using Hotelling’s T 2

statistic, which is based on the DM between the whole vector of covariates, instead of
each mean individually. The statistic is obtained as

TH = (x1 − x0)S
−1(x1 − x0)

′

where x0 and x1 correspond to the sample means of covariates for control and treatment
units, respectively, and S is the estimated covariance matrix—where all estimates are
computed using the units inside the given window. This statistic is obtained using the
hotelling command. Note that in this case, only one p-value is obtained for each
window.

Confidence intervals under parametric model

Once a parametric model for treatment effects is specified, a finite-sample valid con-
fidence interval can be constructed using randomization inference methods. The idea
is to invert a sequence of hypothesis tests and to report all the values in the param-
eter space for which the (sharp) null hypothesis of no treatment effect is not rejected
at a given level of significance. This method, which is standard in the literature, can
be easily obtained using the rdrandinf command or the sensitivity analysis command
rdsensitivity with the option ci(·), as we discuss and illustrate below.
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Confidence intervals under arbitrary interference

The presence of interference is immaterial when testing the sharp null of no effect, and
the methods described in section 2.3 can still be applied without modification. Point
estimation, however, becomes infeasible because when arbitrary interference is allowed,
the definition of a treatment effect is not straightforward. In this case, Rosenbaum
(2007) suggests a way to construct confidence intervals for a particular measure of the
benefits of the treatment. The rdrandinf command implements this procedure via the
interfci() option, which we briefly summarize here.

Define a placebo trial (or uniformity trial) as a trial in which units are randomly
divided into two groups, but then treatment is withheld from all units. Because, by
construction, nobody receives treatment, the transformed outcomes in the uniformity
trial, eYU,W0

, satisfy eYU,W0
= αW0

. If TU := T (DW0
, eYU,W0

) is the value of the statistic
in this placebo trial, then even though the value of TU is unobservable, its distribution
is known because in a placebo trial, the sharp null hypothesis holds. Consider the
magnitude Δ = T − TU, which measures the difference between the statistic under the
experiment under consideration and under the placebo experiment. If the treatment
has no effect, Δ = 0. For instance, if T is the DM, then

Δ =

P
i∈I0

�
eYi −

eYUi
�
Di

P
i∈I0

Di
−

P
i∈I0

�
eYi −

eYUi
�
(1−Di)

P
i∈I0

(1−Di)

where I0 = {i : Ri ∈ W0}. For this choice of T , Δ is the difference between how
much the treated and control groups deviate (on average) from the zero-effect case. In
other words, Δ measures how much bigger the treatment effect is for the treated group
compared with the control group.

A confidence interval for Δ is constructed in the following way. Let κ1 and κ2 be
some constants satisfying κ2 < κ1. Then, it is easy to see that

� (T − κ1 ≤ Δ ≤ T − κ2) = �(κ2 ≤ Tu ≤ κ1)

Hence, if κ1 and κ2 are chosen to be, say, the α/2 and 1− α/2 quantiles of Tu for some
level α, it follows that Δ ∈ [T − κ1, T − κ2] with probability 1 − α. In practice, the
values for κ1 and κ2 can be recovered from the randomization distribution of Tu, and
T is replaced by its observed value. (Of course, the level of the confidence interval may
not be exactly 1− α because the distribution of Tu is discrete, but the quantiles can be
chosen so that the level is at least 1− α.)

2.5 Sensitivity analysis

We also provide two alternative approaches to sensitivity analysis using randomization
inference methods under the local randomization assumption. These methods are im-
plemented in the rdsensitivity command for sensitivity to model specification and
window length and in the rdrbounds command for sensitivity to randomization mech-
anism and selection bias.
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Sensitivity to parametric model and window length

Although the randomization inference framework used in this article suggests an in-
tuitively and appealing window selector, in practice, the user may want to explore
how robust the results are to different window lengths and parametric models. The
rdsensitivity command calculates the p-values for the desired hypothesis test over
a range of window lengths, given the parametric model chosen by the researcher. For
each window, this command considers a range of treatment effects under the null hy-
pothesis, a feature that offers a way of analyzing the sensitivity of the “point estimates”
by carrying out a family of hypothesis tests within and across windows. These methods
may also be used to analyze the sensitivity to the specific parametric model by simply
using this command with different models and then comparing the results.

In addition, for a given window, the above procedure can be used directly to obtain
confidence intervals via inversion of the corresponding hypothesis test, as we mentioned
previously. We illustrate empirically all of these features below.

Misspecification of the randomization mechanism: Sensitivity to unobserved con-
founders

This approach is quite standard in the randomization inference literature (Rosenbaum
2002); thus we include it here as an additional robustness check. The only substantive
modification relative to the conventional approach is the explicit use of the different
windows around the cutoff, which provides an additional dimension for sensitivity anal-
ysis.

Assume that, inside the window, the randomization mechanism follows a Bernoulli
experiment where the individual probability of treatment is

�(Di = 1) = qi =
exp(γUi)

1 + exp(γ)
(1)

and Ui is an unobserved binary variable. This gives

qi = qL =
1

1 + exp(γ)
≡

1

1 + Γ
and qi = qH =

exp(γ)

1 + exp(γ)
≡

Γ

1 + Γ

for units with Ui = 0 and Ui = 1, respectively, where Γ ≡ exp(γ). It follows that the
odds ratio for units i and j satisfies

1

Γ
≤

qi/(1− qi)

qj/(1− qj)
≤ Γ

or, equivalently, ���� log
�

qi
1− qi

�
− log

�
qj

1− qj

� ���� ≤ γ

In a completely randomized experiment, γ = 0, so all units have the same probability
of treatment. Thus γ measures the degree of departure from a randomized experiment
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(under the assumptions imposed). The idea of Rosenbaum’s sensitivity analysis is to
use (1) to see how the randomization p-value varies over a range of values for γ (or Γ).

To make this method operational, one must assign the unobservable Ui to units in
the sample in a way that ensures that the distribution of the statistic of interest can be
bounded by two distributions that can be obtained from the data. To this end, following
Rosenbaum (2002), the rdrbounds command sorts the outcome in decreasing order and
performs a search over the sets U+ and U

−, where U

+ contains all vectors with ones in
the first ℓ positions and zeros in the remaining positions, and U

− contains vectors with
zeros in the first ℓ positions and ones in the remaining ones.

2.6 Extension to fuzzy RD designs

In the so-called fuzzy RD design, treatment is no longer deterministically assigned based
on the running variable; hence, compliance is imperfect among units below and above
the cutoff. This implies that treatment assignment and treatment status can in principle
be different. To adapt the previous notation to this context, let d(r) be the vector of
potential treatment assignments, so that the observed treatment status is given by
D = d(R). Treatment assignment for units i is now given by Zi = �(Ri ≥ r), and the
vector of treatment assignments is ZW0

restricted to the units within the window W0

(using the same notation introduced previously). The usual way to handle fuzzy designs
is to use the vector Z as an instrument for D. We assume that the distribution of Z is
known. Imbens and Rosenbaum (2005) discuss randomization inference methods in the
context of IV models.

Under the null hypothesis that the treatment effect is τ = τ0, the adjusted responses
eyi − τ0Di are fixed and unrelated to the instrument. Therefore, the distribution of any
statistic T (ZW0

, eYW0
− τ0DW0

) is known and can be used to perform inference in the
same way as it was for sharp designs. The statistic used in this case, which we denote
TAR,

2 is the difference in the adjusted transformed responses between units assigned to
treatment and control

TAR =

P
i∈I0

�
eYi − τ0Di

�
Zi

P
i∈I0

Zi
−

P
i∈I0

�
eYi − τ0Di

�
(1− Zi)

P
i∈I0

(1− Zi)

where as before I0 = {i : Ri ∈ W0}. When the outcomes are transformed using a linear
model, this statistic is equivalent to the difference in the intercepts between two reduced
form regressions of Yi on ri, one at each side of the cutoff, then adjusted by τ0.

For comparison, we provide an implementation of a Wald-type two-stage least-
squares statistic (TSLS). Inference for the TSLS statistic relies on asymptotic approx-
imations and is sensitive to weak instruments.

2. AR stands for Anderson–Rubin.
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3 The rdrandinf command

This section describes the syntax of rdrandinf, which calculates randomization p-values
on a specified window under different randomization mechanism and potential-outcomes
models.

3.1 Description

rdrandinf implements randomization inference and related methods for RD designs,
using observations in a specified or data-driven selected window around the cutoff where
local randomization is assumed to hold.

3.2 Syntax

rdrandinf outvar runvar
�
if
� �

in
� �

, cutoff(#) wl(#) wr(#)

statistic(stat) p(#) evall(#) evalr(#) kernel(kerneltype) nulltau(#)

ci(level
�
tlist

�
) interfci(#) fuzzy(fuzzy var

�
fuzzy stat

�
) d(#) dscale(#)

bernoulli(varname) reps(#) seed(#) covariates(varlist) obsmin(#)

obsstep(#) wmin(#) wstep(#) nwindows(#) rdwstat(stat) approximate

rdwreps(#) level(#) plot graph options(graphopts) quietly
�

outvar is the outcome variable. runvar is the running variable (also known as the score
or forcing variable).

3.3 Options

cutoff(#) specifies the RD cutoff for the running variable runvar. The default is
cutoff(0).

wl(#) specifies the left limit of the window. The default is the minimum of the running
variable.

wr(#) specifies the right limit of the window. The default is the maximum of the
running variable.

statistic(stat) specifies the statistic to be used for randomization inference. stat

may be ttest (DM), ksmirnov (KS statistic), ranksum (Wilcoxon–Mann–Whitney
studentized statistic), or all, which specifies all three statistics. The default is
statistic(ttest).

p(#) specifies the order of the polynomial for the outcome transformation model. The
default is p(0).
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evall(#) specifies the point at the left of the cutoff at which the transformed outcome
is evaluated. The default is the cutoff value.

evalr(#) specifies the point at the right of the cutoff at which the transformed outcome
is evaluated. The default is the cutoff value.

kernel(kerneltype) specifies the type of kernel to use as the weighting scheme. ker-

neltype may be uniform (uniform kernel), triangular (triangular kernel), or epan
(Epanechnikov kernel). The default is kernel(uniform).

nulltau(#) sets the value of the treatment effect under the null hypothesis. The
default is nulltau(0).

ci(level
�
tlist

�
) calculates a confidence interval for the treatment effect by test in-

version, where level specifies the level of the confidence interval and tlist indicates
the grid of treatment effects to be evaluated. This option uses rdsensitivity to
calculate the confidence interval; type help rdsensitivity for details.

interfci(#) sets the level for Rosenbaum’s confidence interval under arbitrary inter-
ference between units (Rosenbaum 2007).

fuzzy(fuzzy var
�
fuzzy stat

�
) specifies the name of the endogenous treatment vari-

able in the fuzzy design. The options for statistics in fuzzy designs are ar for an
Anderson–Rubin-type statistic and tsls for a TSLS statistic. The default fuzzy stat

is ar.

d(#) specifies the effect size for asymptotic power calculation. The default is 0.5 times
the standard deviation of the outcome variable for the control group.

dscale(#) specifies the fraction of the standard deviation of the outcome variable for
the control group used as an alternative hypothesis for asymptotic power calculation.
The default is dscale(.5).

bernoulli(varname) specifies that the randomization mechanism follow Bernoulli trials
instead of fixed margins randomization. The values of the probability of treatment
for each unit are indicated in varname.

reps(#) specifies the number of replications. The default is reps(1000).

seed(#) sets the seed for the randomization test. With this option, the user can
manually set the desired seed or can enter the value −1 to use the system seed. The
default is seed(666).

Note: When the window around the cutoff is not specified, rdrandinf can select
the window automatically using the rdwinselect command. The following options are
available:

covariates(varlist) specifies the covariates used by the rdwinselect command.

obsmin(#) specifies the minimum number of observations above and below the cut-
off in the smallest window used by the rdwinselect command. The default is
obsmin(10).
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obsstep(#) specifies the minimum number of observations to be added on each side
of the cutoff for the sequence of nested windows constructed by the rdwinselect

command. The default is obsstep(2).

wmin(#) specifies the smallest window to be used (if minobs() is not specified) by the
rdwinselect command. Specifying both wmin() and obsmin() returns an error.

wstep(#) specifies the increment in window length (if obsstep() is not specified) by
the rdwinselect command. Specifying both obsstep() and wstep() returns an
error.

nwindows(#) specifies the number of windows to be used by the rdwinselect com-
mand. The default is nwindows(10).

rdwstat(stat) specifies the statistic to be used by the rdwinselect command (see help
file for options). The default is rdwstat(ttest).

approximate forces the rdwinselect command to conduct the covariate balance tests
using a large-sample approximation instead of finite-sample exact randomization
inference methods.

rdwreps(#) specifies the number of replications to be used by the rdwinselect com-
mand. The default is rdwreps(1000).

level(#) specifies the minimum accepted value of the p-value from the covariate bal-
ance tests to be used by the rdwinselect command. The default is level(.15).

plot draws a scatterplot of the minimum p-value from the covariate balance test against
window length implemented by the rdwinselect command.

graph options(graphopts) passes the graphopts options to the plot. Options such as
titles should be written without double quotes.

quietly suppresses output from the rdwinselect command.

4 The rdwinselect command

This section describes the syntax of the rdwinselect command. This command finds
the largest window in which a set of covariates is found to be balanced between treated
and control groups.
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4.1 Description

rdwinselect implements the window-selection procedure based on balance tests for
RD designs under local randomization. Specifically, it constructs a sequence of nested
windows around the RD cutoff and reports binomial tests for the running variable runvar
and covariate balance tests for covariates covariates (if specified). The recommended
window is the largest window around the cutoff such that the minimum p-value of the
balance test is larger than a prespecified level for all nested (smaller) windows. By
default, the p-values are calculated using randomization inference methods.

4.2 Syntax

rdwinselect runvar
�
covariates

� �
if

� �
in

� �
, cutoff(#) obsmin(#)

obsstep(#) wmin(#) wstep(#) nwindows(#) statistic(stat) approximate

p(#) evalat(point) kernel(kerneltype) reps(#) seed(#) level(#) plot

graph options(graphopts)
�

runvar is the running variable (also known as the score or forcing variable). covariates
is the list of covariates to be used in the balancing tests. This list is optional, but the
recommended window is provided only when at least one covariate is specified.

4.3 Options

cutoff(#) specifies the RD cutoff for the running variable runvar. The default is
cutoff(0).

obsmin(#) specifies the minimum number of observations above and below the cutoff
in the smallest window. The default is obsmin(10).

obsstep(#) specifies the minimum number of observations to be added on each side of
the cutoff in all but the first window. The default is obsstep(2).

wmin(#) specifies the smallest window to be used (if minobs() is not specified). Spec-
ifying wmin() and obsmin() returns an error.

wstep(#) specifies the increment in window length (if obsstep() is not specified).
Specifying both obsstep() and wstep() returns an error.

nwindows(#) specifies the number of windows to be used. The default is nwindows(10).

statistic(stat) specifies the statistic to be used. stat may be one of the follow-
ing: ttest (DM), ksmirnov (KS statistic), ranksum (Wilcoxon–Mann–Whitney stu-
dentized statistic), or hotelling (Hotelling’s T -squared statistic). The default is
statistic(ttest).

approximate performs the covariate balance test using a large-sample approximation
instead of randomization inference.
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p(#) specifies the order of the polynomial for the outcome adjustment model. The
default is p(0).

evalat(point) specifies the point at which the adjusted variable is evaluated. point may
be cutoff or means. The default is evalat(cutoff).

kernel(kerneltype) specifies the type of kernel to use as the weighting scheme. ker-

neltype may be uniform (uniform kernel), triangular (triangular kernel), or epan
(Epanechnikov kernel). The default is kernel(uniform).

reps(#) sets the number of replications for the randomization test. The default is
reps(1000).

seed(#) sets the initial seed for the randomization test. With this option, the user can
manually set the desired seed or can enter the value −1 to use the system seed. The
default is seed(666).

level(#) specifies the minimum accepted value of the p-value from the covariate bal-
ance tests to be used. The default is level(.15).

plot draws a scatterplot of the minimum p-value from the covariate balance test against
window length.

graph options(graphopts) passes the graphopts options to the plot. Options such as
titles should be written without double quotes.

5 The rdsensitivity command

This section describes the syntax of the rdsensitivity command, which is used to
analyze the sensitivity of randomization p-values and confidence intervals to different
window lengths.

5.1 Description

rdsensitivity performs sensitivity analysis for RD designs under local randomization.

5.2 Syntax

rdsensitivity outvar runvar
�
if

� �
in

� �
, cutoff(#) wlist(numlist)

tlist(numlist) saving(filename) nodots nodraw verbose

ci(window
�
level

�
) statistic(stat) p(#) evalat(point) kernel(kerneltype)

fuzzy(fuzzy var) reps(#) seed(#)
�

outvar is the outcome variable. runvar is the running variable (also known as the score
or forcing variable).
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5.3 Options

cutoff(#) specifies the RD cutoff for the running variable runvar. The default is
cutoff(0).

wlist(numlist) specifies the list of window lengths to be evaluated. By default, the
program constructs 10 windows around the cutoff, the first one including 10 treated
and control observations and adding 5 observations to each group in subsequent
windows.

tlist(numlist) specifies the list of values of the treatment effect under the null to
be evaluated. By default, the program uses 10 evenly spaced points within the
asymptotic confidence interval for a constant treatment effect in the smallest window
to be used.

saving(filename) saves the dataset containing the data for the contour plot in filename.
This allows the user to replicate and modify the appearance of the plot and conduct
further sensitivity analysis.

nodots suppresses replication dots.

nodraw suppresses the contour plot.

verbose displays the matrix of results.

ci(window
�
level

�
) returns the confidence interval corresponding to the window length

indicated in window. The value in ci() needs to be one of the values in wlist().
The level of the confidence interval can be specified with the level() option. The
default level is 0.05, corresponding to a 95% confidence interval.

statistic(stat) specifies the statistic to be used in randomization inference. stat

may be ttest (DM), ksmirnov (KS statistic), ranksum (Wilcoxon–Mann–Whitney
studentized statistic), or all, which specifies all three statistics. The default is
statistic(ttest).

p(#) specifies the order of the polynomial for the outcome transformation model. The
default is p(0).

evalat(point) specifies the point at which the adjusted variable is evaluated. point may
be cutoff or means. The default is evalat(cutoff).

kernel(kerneltype) specifies the type of kernel to use as the weighting scheme. ker-

neltype may be uniform (uniform kernel), triangular (triangular kernel), or epan
(Epanechnikov kernel). The default is kernel(uniform).

fuzzy(fuzzy var) specifies the name of the endogenous treatment variable in the fuzzy
design. This option uses an Anderson–Rubin-type statistic.

reps(#) specifies the number of replications for the randomization test. The default is
reps(1000).
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seed(#) sets the initial seed for the randomization test. With this option, the user can
manually set the desired seed or can enter the value −1 to use the system seed. The
default is seed(666).

6 The rdrbounds command

This section describes the syntax of the rdrbounds command, which calculates lower
and upper bounds for the randomization p-value under different degrees of departure
from a local randomized experiment, as suggested by Rosenbaum (2002).

6.1 Description

rdrbounds calculates Rosenbaum bounds for p-values in RD designs under local ran-
domization.

6.2 Syntax

rdrbounds outvar runvar
�
if
� �

in
� �

, cutoff(#) prob(varname)

gammalist(numlist) expgamma(numlist) wlist(numlist) ulist(numlist)

bound(bounds) fmpval statistic(stat) p(#) evalat(point)

kernel(kerneltype) nulltau(#) fuzzy(fuzzy var) reps(#) seed(#)
�

outvar is the outcome variable. runvar is the running variable (also known as the score
or forcing variable).

6.3 Options

cutoff(#) specifies the RD cutoff for the running variable runvar. The default is
cutoff(0).

prob(varname) specifies the name of the variable containing individual probabilities of
treatment in a Bernoulli trial when the selection factor gamma is zero. The default
is the proportion of treated units in each window (assumed equal for all units).

gammalist(numlist) specifies the list of values of gamma to be evaluated.

expgamma(numlist) specifies the list of values of exp(gamma) to be evaluated. The
default is expgamma(1.5 2 2.5 3).

wlist(numlist) specifies the list of window lengths to be evaluated. By default, the
program constructs 10 windows around the cutoff, the first one including 10 treated
and control observations and then adding 5 observations to each group in subsequent
windows.
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ulist(numlist) specifies the list of vectors of the unobserved confounder to be evaluated.
The default takes all vectors with ones in the first k positions and zeros in the
remaining position; see Rosenbaum (2002).

bound(bounds) specifies which bounds the command calculates. bounds may be upper

(upper bound), lower (lower bound), or both (upper and lower bounds). The default
is bound(both).

fmpval calculates the p-value under fixed margins randomization in addition to the
p-value under Bernoulli trials.

statistic(stat) specifies the statistic to be used in randomization inference. stat may
be ttest (DM), ksmirnov (KS statistic), or ranksum (Wilcoxon–Mann–Whitney stu-
dentized statistic). The default is statistic(ranksum).

p(#) specifies the order of the polynomial for the outcome transformation model. The
default is p(0).

evalat(point) specifies the point at which the transformed variable is evaluated. point
may be cutoff or means. The default is evalat(cutoff).

kernel(kerneltype) specifies the type of kernel to use as the weighting scheme. ker-

neltype may be uniform (uniform kernel), triangular (triangular kernel), or epan
(Epanechnikov kernel). The default is kernel(uniform).

nulltau(#) sets the value of the treatment effect under the null hypothesis. The
default is nulltau(0).

fuzzy(fuzzy var) specifies the name of the endogenous treatment variable in the fuzzy
design. This option uses an Anderson–Rubin-type statistic.

reps(#) sets the number of replications for the randomization test. The default is
reps(500).

seed(#) sets the initial seed for the randomization test. With this option, the user can
manually set the desired seed or can enter the value −1 to use the system seed. The
default is seed(666).

7 Illustration of methods

We illustrate our commands using the dataset from Cattaneo, Frandsen, and Titiunik
(2015), which has also been used to illustrate the nonparametric local polynomial meth-
ods in Calonico, Cattaneo, and Titiunik (2014a, 2015b) and Cattaneo, Jansson, and Ma
(2016a). rdlocrand senate.dta contains information on 1,390 U.S. Senate elections
between 1914 and 2010 and was used before to analyze the effect of the incumbent
status of a political party on the probability of winning future elections. The running
variable in this dataset is demmv, the Democratic margin of victory in a statewide Sen-
ate election at t, defined as the difference in vote share between the Democratic party
and its strongest opponent. A positive value of the running variable indicates that the
Democratic party won the election, and the cutoff is therefore r = 0.
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We start by loading the dataset and providing some descriptive statistics:

. use rdlocrand_senate

. global covariates presdemvoteshlag1 population demvoteshlag1 demvoteshlag2
> demwinprv1 demwinprv2 dopen dmidterm

. describe $covariates

storage display value
variable name type format label variable label

presdemvotesh~1 float %9.0g Democratic presidential vote share
at t-1

population long %10.0g Population
demvoteshlag1 float %9.0g Democratic vote share at t-1
demvoteshlag2 float %9.0g Democratic vote share at t-2
demwinprv1 float %9.0g =1 if Democratic won at t-1
demwinprv2 float %9.0g =1 if Democratic won at t-2
dopen float %9.0g =1 if open seat
dmidterm float %9.0g =1 if midterm election at t

. summarize demmv $covariates

Variable Obs Mean Std. Dev. Min Max

demmv 1,390 7.171159 34.32488 -100 100
presdemvot~1 1,387 46.11975 14.31701 0 97.03408

population 1,390 3827919 4436950 78000 3.73e+07
demvoteshl~1 1,349 52.69048 18.2706 0 100
demvoteshl~2 1,308 52.86918 18.23913 0 100

demwinprv1 1,349 .5441067 .4982355 0 1
demwinprv2 1,308 .543578 .4982879 0 1

dopen 1,380 .2471014 .4314826 0 1
dmidterm 1,390 .5136691 .499993 0 1

The running variable ranges from−100 to 100 with an average of 7 percentage points.
The outcome of interest is demvoteshfor2, the Democratic vote share in the following
election for the same Senate seat—which, given the staggered nature of Senate elections
in the United States, occurs two elections later, at t+2. The set of covariates, described
in the output above is exactly the one used in Cattaneo, Frandsen, and Titiunik (2015);
thus we can replicate their empirical findings using the new commands introduced here.
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The most basic syntax for rdwinselect is the following:

. rdwinselect demmv $covariates, cutoff(0)

Window selection for RD under local randomization

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 0

Number of obs 640 750 Kernel type = uniform
1st percentile 6 7 Reps = 1000
5th percentile 32 37 Testing method = rdrandinf

10th percentile 64 75 Balance test = ttest
20th percentile 128 150

Bal. test Var. name Bin. test
Window length /2 p-value (min p-value) p-value Obs<c Obs>=c

0.529 0.210 demvoteshlag2 0.327 10 16
0.733 0.262 dopen 0.200 15 24
0.937 0.132 dopen 0.126 16 27
1.141 0.044 dopen 0.161 20 31
1.346 0.229 dmidterm 0.382 28 36
1.550 0.102 dmidterm 0.728 35 39
1.754 0.075 dmidterm 0.747 41 45
1.958 0.046 dmidterm 0.602 43 49
2.163 0.075 dmidterm 0.480 45 53
2.367 0.132 dopen 0.637 53 59

Variable used in binomial test (running variable): demmv
Covariates used in balance test: presdemvoteshlag1 population demvoteshlag1
> demvoteshlag2 demwinprv1 demwinprv2 dopen dmidterm

Recommended window is [-.733; .733] with 39 observations (15 below, 24 above).

Because in this particular application the cutoff is zero, which is the default value, the
cutoff() option can be omitted. Thus all the remaining examples will not specify this
option. In practice, when the cutoff is not zero, the user can simply specify cutoff().
Alternatively, it may be easier to simply redefine the running variable by recentering it
at the cutoff. By default, rdwinselect uses the difference-in-means statistic to perform
hypothesis tests—but this can be changed with the statistic() option.

The output of rdwinselect is divided in three panels. The upper-left panel provides
information on sample sizes. The first row gives the total number of observations to
the left and to the right of the cutoff and also the total sample size. The following four
rows provide the same information but around small neighborhoods around the cutoffs
defined by the 1st, 5th, 10th, and 20th percentiles of the running variable.

The upper-right panel indicates the total sample size, the degree of the polyno-
mial used by rdrandinf, the type of kernel used for the weighting scheme (uniform,
triangular, or epan), the number of replications in the permutation test (whenever this
test is performed), the method used to perform the covariate balance tests (approximate
or rdrandinf), and the test statistic used (test, ksmirnov, or ranksum).

Finally, the main panel gives the result of the two balance tests performed at each of
the windows considered. The first column provides the window length of each window
considered, divided by two. For example, a value of 0.529 in this column refers to the
window [r − 0.529; r + 0.529], where r is the cutoff (equal to 0 in this case) and the
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window length is r+0.529−(r−0.529) = 1.058. The second column, labeled Bal. test

p-value, provides the minimum p-value of the balancing test; the name of the corre-
sponding variable associated with this p-value is given in column 3, Var. name (min

p-value). The p-value is obtained by either randomization inference or an asymptotic
approximation, depending on the option specified. The fourth column gives the p-value
from a binomial probability test of the hypothesis that the probability of treatment
is 0.5. Type help bitest for further details. Columns 5 and 6 give the number of
observations to the left and right of the cutoff inside each window. As indicated in the
last line of the output, the largest recommended window (the largest window for which
the second column is equal to or above 0.15) in this case is [−0.733; 0.733] and contains
15 observations below the cutoff and 24 observations above.

By default, rdwinselect starts with a window that contains at least 10 obser-
vations at each side of the cutoff and increases the length, ensuring that at least 2
observations are added in each successive window. The user can choose these two
values using the obsmin() and obsstep() options, respectively, or can define the win-
dows in terms of their length instead of the number of observations. For instance,
Cattaneo, Frandsen, and Titiunik (2015) start from the window [−0.5; 0.5] and increase
the width by 0.125 using 10,000 replications in the permutation test. To replicate their
results, we can type

. rdwinselect demmv $covariates, wmin(.5) wstep(.125) reps(10000)

Window selection for RD under local randomization

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 0

Number of obs 640 750 Kernel type = uniform
1st percentile 6 7 Reps = 10000
5th percentile 32 37 Testing method = rdrandinf

10th percentile 64 75 Balance test = ttest
20th percentile 128 150

Bal. test Var. name Bin. test
Window length /2 p-value (min p-value) p-value Obs<c Obs>=c

0.500 0.268 demvoteshlag2 0.230 9 16
0.625 0.423 dopen 0.377 13 19
0.750 0.265 dopen 0.200 15 24
0.875 0.153 dopen 0.211 16 25
1.000 0.074 dopen 0.135 17 28
1.125 0.039 dopen 0.119 19 31
1.250 0.063 dopen 0.105 21 34
1.375 0.140 dmidterm 0.539 30 36
1.500 0.092 dmidterm 0.640 34 39
1.625 0.113 dmidterm 0.734 37 41

Variable used in binomial test (running variable): demmv
Covariates used in balance test: presdemvoteshlag1 population demvoteshlag1
> demvoteshlag2 demwinprv1 demwinprv2 dopen dmidterm

Recommended window is [-.875; .875] with 41 observations (16 below, 25 above).
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Note that the minimum p-value for the largest recommended window, which is
[−0.875; 0.875], is slightly above the cutoff value 0.15. To compare our results with the
ones in Cattaneo, Frandsen, and Titiunik (2015), we will set the window [−0.75; 0.75]
as our preferred choice.3

Additionally, observe that the minimum p-value is not necessarily monotonic on the
length of the window. The plot option allows the user to depict graphically how these
values change for different lengths. We will set the number of windows to 80 to have
more observations in the plot, and we will specify the approximate option to speed up
the calculations. With this option, the command uses the large-sample approximation
instead of randomization inference. It is useful for illustration because it is much faster,
but it can be misleading because the approximation may be poor when the sample
is small. The output from rdwinselect with 80 windows is a long table and will be
omitted. The resulting graph is shown in figure 1.

. quietly rdwinselect demmv $covariates, wmin(.5) wstep(.125)
> nwin(80) approximate plot
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The dotted line corresponds to p−value=.15

Minimum p−value from covariate test

Figure 1. Plot of p-values

The figure shows that the p-values vary widely for very short windows, but the
sequence stabilizes once the window length is large enough (around the value 3 in this
case).

Once the window has been selected, randomization inference to test the sharp null
hypothesis of no treatment effect can be performed using rdrandinf. For example, take
the window [−0.75; 0.75], which is the one selected by Cattaneo, Frandsen, and Titiunik
(2015) and replicated above. The basic syntax for rdrandinf is

3. The user trying to replicate this code should be aware that these calculations involve permuting
the treatment variable many times for a large set of covariates. Running this command may take
about 40 minutes.
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. rdrandinf demvoteshfor2 demmv, wl(-.75) wr(.75)

Selected window = [-.75 ; .75]

Running randomization-based test...
Randomization-based test complete.

Inference for sharp design

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 0

Number of obs 595 702 Kernel type = uniform
Eff. Number of obs 15 22 Reps = 1000

Mean of outcome 42.808 52.497 Window = set by user
S.D. of outcome 7.042 7.742 H0: tau = 0.000

Window -0.750 0.750 Randomization = fixed margins

Outcome: demvoteshfor2. Running variable: demmv.

Finite sample Large sample

Statistic T P>|T| P>|T| Power vs d = 3.52

Diff. in means 9.689 0.000 0.000 0.300

Like the output of rdwinselect, that of rdrandinf is divided in three panels. The
upper-left panel provides the number of observations at each side of the cutoff, sample
size below and above the cutoff inside the specified window, some descriptive statistics
for the outcome inside the window, and the selected window. Note that the first line in
this panel displays the number of observations with nonmissing values of the outcome
and running variable, so the sample sizes shown can differ from the total sample size.
The upper-right panel gives the total sample size, the order of the polynomial, the type
of kernel used for the weighting scheme (uniform, triangular, or epan), the number
of replications in the permutation test, and whether the window was specified by the
user by setting wl() and wr() or calculated using rdwinselect, as will be illustrated
shortly.

Finally, the main panel gives the results from the randomization test. The first
column, labeled Statistic, indicates the statistic used in the randomization test. The
second column gives the observed value of the selected statistic, and the third col-
umn shows its finite-sample p-value obtained from the randomization test. The fourth
column gives the asymptotic p-value, that is, the p-value obtained from the correspond-
ing asymptotic distribution of the chosen statistic. Finally, the fifth column gives the
asymptotic power against an alternative value that can be specified using the d() or
dscale() option. The default is dscale(.5), that is, an effect size equal to half the
standard deviation of the outcome for the control group inside the window (the critical
value for the power calculation is set to 1.96).

As mentioned above, rdrandinf uses the DM as the default statistic, but it can also
use the KS and the RS statistics. By adding statistic(all) as an option, we can
obtain the result for all three statistics. These last two statistics are obtained using
the ksmirnov and ranksum Stata commands, respectively. See the corresponding Stata
help files for further details. The output is
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. rdrandinf demvoteshfor2 demmv, wl(-.75) wr(.75) statistic(all)

Selected window = [-.75 ; .75]

Running randomization-based test...
Randomization-based test complete.

Inference for sharp design

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 0

Number of obs 595 702 Kernel type = uniform
Eff. Number of obs 15 22 Reps = 1000

Mean of outcome 42.808 52.497 Window = set by user
S.D. of outcome 7.042 7.742 H0: tau = 0.000

Window -0.750 0.750 Randomization = fixed margins

Outcome: demvoteshfor2. Running variable: demmv.

Finite sample Large sample

Statistic T P>|T| P>|T| Power vs d = 3.52

Diff. in means 9.689 0.000 0.000 0.300
Kolmogorov-Smirnov 0.552 0.002 0.005 .

Rank sum z-stat -3.217 0.000 0.001 0.209

We can see that the three statistics provide basically the same result in terms of
inference; the randomization test rejects the sharp null of no treatment effect at one
percent significance level in all three cases. Also note that the rdrandinf command
does not provide the asymptotic power for the KS statistic.

The window in which to perform the randomization-based tests can be set manually
using wl() and wr(). These options specify the lower and upper limits of the chosen
window. Importantly, these are window limits and not lengths, so for instance, if the
cutoff is 100 and the user wants a window of ±5, the correct syntax is wl(95) wr(105).
We advise the user to always normalize the cutoff to zero by centering the running
variable to avoid confusion.

Alternatively, the user can specify the list of covariates to have rdrandinf select
the window automatically using rdwinselect. All the options allowed in rdwinselect

can be passed through rdrandinf. By default, the output for rdwinselect is displayed
before the output for rdrandinf, but it can be suppressed using the quietly option.
For example,
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. rdrandinf demvoteshfor2 demmv, statistic(all) covariates($covariates)
> wmin(.5) wstep(.125) level(0.16) quietly rdwreps(10000)
Calculating window...

Selected window = [-.75 ; .75]

Running randomization-based test...
Randomization-based test complete.

Inference for sharp design

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 0

Number of obs 595 702 Kernel type = uniform
Eff. Number of obs 15 22 Reps = 1000

Mean of outcome 42.808 52.497 Window = rdwinselect
S.D. of outcome 7.042 7.742 H0: tau = 0.000

Window -0.750 0.750 Randomization = fixed margins

Outcome: demvoteshfor2. Running variable: demmv.

Finite sample Large sample

Statistic T P>|T| P>|T| Power vs d = 3.52

Diff. in means 9.689 0.000 0.000 0.300
Kolmogorov-Smirnov 0.552 0.002 0.005 .

Rank sum z-stat -3.217 0.000 0.001 0.209

Note that the reported p-values are slightly different. As explained above, the reason
is that the two commands are performing the randomization test starting from different
seeds. The user can obtain the exact same results for the two syntaxes by setting the
same seed—for example, seed(9876)—in both commands.

The rdrandinf command allows the user to specify a polynomial transformation
model for the outcomes using the p() option. By default, the command sets p(0),
which means no transformation. When p() is set to an integer larger than zero, the
slopes (and possibly higher-order terms) are subtracted from the outcomes, leaving a
residualized version of the outcome that differs only above and below the cutoff in the
intercept. For instance, to perform a linear transformation, we type
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. rdrandinf demvoteshfor2 demmv, statistic(all) wl(-.75) wr(.75) p(1)

Selected window = [-.75 ; .75]

Running randomization-based test...
Randomization-based test complete.

Inference for sharp design

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 1

Number of obs 595 702 Kernel type = uniform
Eff. Number of obs 15 22 Reps = 1000

Mean of outcome 42.808 52.497 Window = set by user
S.D. of outcome 7.042 7.742 H0: tau = 0.000

Window -0.750 0.750 Randomization = fixed margins

Outcome: demvoteshfor2. Running variable: demmv.

Finite sample Large sample

Statistic T P>|T| P>|T| Power vs d = 3.52

Diff. in means 15.297 0.000 0.066 0.071
Kolmogorov-Smirnov 0.797 0.000 . .

Rank sum z-stat -4.455 0.000 . .

When a model for the outcomes is specified—that is, when p() is set to a number
greater than zero—with the option statistic(ttest), rdrandinf fits a regression of
the outcome on the treatment dummy interacted with a polynomial of the running vari-
able, and uses the difference in intercepts as the test-statistic. The other test statistics
use the residuals described above as outcomes. Note that the command does not provide
the asymptotic p-value or the asymptotic power of the KS and RS statistics, because the
asymptotic distribution does not account for the model transformation and hence can
be misleading.

In the presence of arbitrary interference, a confidence interval for a particular mea-
sure of the effects of the program (described in section 2.5) can be obtained with the
interfci() option. For example, to obtain a 95% confidence interval, we type
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. rdrandinf demvoteshfor2 demmv, wl(-.75) wr(.75) interfci(.05)

Selected window = [-.75 ; .75]

Running randomization-based test...
Randomization-based test complete.

Inference for sharp design

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 0

Number of obs 595 702 Kernel type = uniform
Eff. Number of obs 15 22 Reps = 1000

Mean of outcome 42.808 52.497 Window = set by user
S.D. of outcome 7.042 7.742 H0: tau = 0.000

Window -0.750 0.750 Randomization = fixed margins

Outcome: demvoteshfor2. Running variable: demmv.

Finite sample Large sample

Statistic T P>|T| P>|T| Power vs d = 3.52

Diff. in means 9.689 0.000 0.000 0.300

Confidence interval under interference

Statistic [95% Conf. Interval]

Diff. in means 3.963 15.525

In terms of interpretation, one should remember that the confidence interval under
interference is not a confidence interval for the point estimate (and in fact, it may
not even contain the point estimate). As explained above, the interference confidence
interval is constructed based on the difference between the observed statistic and the
statistic that would be observed if the treatment was withheld from all units. In our
application, allowing for arbitrary interference, we can say with 95% confidence that
the “excess” benefit of the treated group compared with the control group is roughly
between 4 and 15.5. Again, in this particular example, the point estimate under SUTVA

happens to be contained in the confidence interval under interference, but this need not
be the case and has no clear interpretation.

The rdlocrand package provides two types of sensitivity analyses to assess how
p-values change with window length. The first one, rdsensitivity, calculates and
plots a matrix of p-values over a range of values for the treatment effect under the null
hypothesis (rows) and window lengths (columns). For instance, we can see how the
p-values change by starting from the selected window, increasing the window length by
0.25 and over a range of treatment effects that is roughly the point estimate plus and
minus 10:
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. rdsensitivity demvoteshfor2 demmv, wlist(.75(.25)2) tlist(0(1)20) nodots verbose

Running randomization-based test...

Randomization-based test complete.

.75 1 1.25 1.5 1.75 2

0 0 .001 0 0 0 0
1 0 .001 0 0 0 0
2 .001 .001 .002 0 0 0
3 .013 .004 .003 0 0 0
4 .03 .009 .007 .002 .001 0
5 .068 .023 .018 .013 .003 .005
6 .147 .062 .042 .037 .039 .029
7 .309 .144 .093 .088 .106 .092
8 .518 .306 .173 .239 .233 .262
9 .788 .534 .299 .427 .484 .569

10 .918 .869 .497 .731 .83 .939
11 .608 .844 .756 .907 .839 .668
12 .378 .514 .969 .574 .496 .36
13 .201 .268 .665 .323 .231 .134
14 .102 .139 .428 .154 .09 .036
15 .04 .051 .254 .064 .035 .007
16 .019 .016 .13 .022 .009 .002
17 .008 .006 .073 .004 .003 0
18 .003 0 .032 .001 0 0
19 .001 0 .01 .001 0 0
20 0 0 .002 0 0 0

In the above syntax, nodots suppresses the replication dots, and verbose indicates
that the matrix of p-values will be displayed as part of the output (otherwise, the only
output of the command is the plot, unless nodraw is specified).

One way to interpret these results is to see the range of values for which the p-value
is above, say, 0.05, as a 95% confidence interval for the point estimate (assuming a
constant additive treatment effect). Thus the above table shows how the confidence
interval for the treatment effect changes as the window length increases. For instance,
the 95% confidence interval for the window [−.75; .75] is roughly [5; 14], whereas for
the window [−2; 2], it becomes [7; 13]. In this case, the point estimate seems to be rel-
atively stable over the range of windows considered. A more thorough analysis should
consider a finer grid of values in wlist and tlist and a larger number of replica-
tions, although these changes can increase computing time considerably. The options
wlist() and tlist() admit the usual Stata numlist syntax, such as wlist(.75 1 1.5

2), wlist(.75(.25)2), wlist(.75(.5)1 2 3), etc. The confidence interval for the
window [−.75; .75] can be obtained using the ci() option:

. rdsensitivity demvoteshfor2 demmv, wlist(.75(.25)2) tlist(0(1)20) nodots ci(.75)

Running randomization-based test...

Randomization-based test complete.

Confidence interval for w = .75

Statistic [95% Conf. Interval]

Diff. in means 5.000 14.000
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The saving() option saves the dataset with the contour plot data so that the user
can replicate and also modify the contour plot. The code to reproduce the default plot
is

. rdsensitivity demvoteshfor2 demmv, wlist(.75(.25)10) tlist(0(1)20) nodots
> saving(graphdata)

Running randomization-based test...

Randomization-based test complete.

. preserve

. use graphdata, clear

. twoway contour pvalue t w, ccuts(0(0.05)1)

. restore
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Figure 2. Sensitivity analysis

The resulting graph is shown in figure 2. The plot depicts the grid of window
lengths in the horizontal axis and the grid of treatment effects under the null. The
color represents the p-value for each pair of window length and treatment effect, where
light gray corresponds to zero and black corresponds to one. This is simply a graphical
display of the results given by rdsensitivity. With the data obtained, and using the
saving() option, the user can also modify the appearance of the graph or construct
different types of plots. For instance, the following command uses a gray scale instead
of the default colors, with the resulting plot displayed in figure 3.
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. preserve

. use graphdata, clear

. twoway contour pvalue t w, ccuts(0(0.05)1) ccolors(gray*0.01 gray*0.05
> gray*0.1 gray*0.15 gray*0.2 gray*0.25 gray*0.3 gray*0.35
> gray*0.4 gray*0.5 gray*0.6 gray*0.7 gray*0.8 gray*0.9 gray
> black*0.5 black*0.6 black*0.7 black*0.8 black*0.9 black)
> xlabel(.75(1.25)10) ylabel(0(2)20, nogrid) graphregion(fcolor(none))

. restore
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Figure 3. Manually modifying sensitivity plot

Additionally, rdsensitivity can be called from within rdrandinf to obtain confi-
dence intervals for the point estimates obtained using the ci() option. The syntax is
the following:

. rdrandinf demvoteshfor2 demmv, wl(-.75) wr(.75) ci(.05 3(1)20)

Selected window = [-.75 ; .75]

Running randomization-based test...
Randomization-based test complete.

Inference for sharp design

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 0

Number of obs 595 702 Kernel type = uniform
Eff. Number of obs 15 22 Reps = 1000

Mean of outcome 42.808 52.497 Window = set by user
S.D. of outcome 7.042 7.742 H0: tau = 0.000

Window -0.750 0.750 Randomization = fixed margins

Outcome: demvoteshfor2. Running variable: demmv.

Finite sample Large sample

Statistic T P>|T| P>|T| Power vs d = 3.52

Diff. in means 9.689 0.000 0.000 0.300

Calculating confidence interval...
Confidence interval obtained.
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Confidence interval for w = .75

Statistic [95% Conf. Interval]

Diff. in means 5.000 14.000

The second type of sensitivity analysis is performed with rdrbounds. As explained
above, this command calculates upper and lower bounds for the randomization p-value
under Bernoulli trials for a range of values of a parameter Γ ≡ exp(γ) that captures
the strength with which an unobservable binary variable Ui affects the probability of
selection into treatment �[Di = 1]. The basic syntax is

. rdrbounds demvoteshfor2 demmv, expgamma(1.5 2 3) wlist(.5 .75 1) reps(1000)

Calculating randomization p-values...
w = 0.500 0.750 1.000

Bernoulli p-value 0.005 0.000 0.000

Running sensitivity analysis...
gamma exp(gamma) w = 0.500 0.750 1.000

0.41 1.50 lower bound 0.004 0.000 0.000
upper bound 0.024 0.005 0.002

0.69 2.00 lower bound 0.005 0.000 0.000
upper bound 0.052 0.025 0.008

1.10 3.00 lower bound 0.005 0.000 0.000
upper bound 0.194 0.145 0.058

The output from rdrbounds is divided in two parts. The first one shows the random-
ization p-value based on Bernoulli trials for each window. The second panel presents
the lower and upper bounds for the p-values for different values of Γ and windows. The
wider the distance between the lower and upper bounds, the more sensitive the inference
to deviations from a randomized experiment.

There are two directions in which one can look at the second panel. Fixing a column
(that is, for a fixed window length) and moving across rows, the table indicates how
inference is affected by different degrees of departure from a randomized experiment.
This is the type of sensitivity analysis described in Rosenbaum (2002). On the other
hand, fixing a row (that is, for a fixed value of Γ) and moving across columns, the matrix
shows how sensitive the upper and lower bounds for the p-value are to the choice of the
window.

In our application, when the window length is 0.5, the Bernoulli p-value is 0.005. We
can see that when Γ = 1.5, the upper bound is 0.024, so the effect remains significant at
5%. When Γ = 2, the effect is still significant at the 10% level. On the other hand, when
Γ = 3, the bounds become 0.005 and 0.194, so the evidence for a statistically significant
effect is weaker. For the window length selected using rdwinselect, [−0.75; 0.75], the
p-values look fairly robust to misspecification of the selection mechanism: even if the
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unobservable confounder increased the odds ratio of a treated unit compared with a
control unit by a factor of 2, the effect would remain significant at the 10% level.

The fmpval option adds the fixed margins randomization p-value to the first panel of
the output. This allows the user to compare the p-values obtained using each method.

. rdrbounds demvoteshfor2 demmv, expgamma(1.5 2 3) wlist(.5 .75 1) reps(1000)
> fmpval

Calculating randomization p-values...
w = 0.500 0.750 1.000

Bernoulli p-value 0.005 0.000 0.000
Fixed margins p-value 0.007 0.000 0.001

Running sensitivity analysis...
gamma exp(gamma) w = 0.500 0.750 1.000

0.41 1.50 lower bound 0.004 0.000 0.000
upper bound 0.024 0.005 0.002

0.69 2.00 lower bound 0.005 0.000 0.000
upper bound 0.052 0.025 0.008

1.10 3.00 lower bound 0.005 0.000 0.000
upper bound 0.194 0.145 0.058

We can see that the p-values obtained by both methods are very similar, which we
found to be usually true in applications as long as the number of replications is large
enough.

Finally, when we use outcome transformation, the rdrandinf command allows the
user to choose in which point to evaluate the transformed outcomes. By default, the
evaluation point is the cutoff, which emulates the idea used in the local polynomial ap-
proach of estimating the effect at the cutoff. However, whenever the local randomization
assumption is plausible, the cutoff need not be the point of interest. For instance, to
set the evaluation points at the means of the running variable inside the window below
and above the cutoff, we can type
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. quietly summarize demmv if abs(demmv)<=.75 & demmv>=0 & demmv!=. &
> demvoteshfor2!=.

. local mt=r(mean)

. quietly summarize demmv if abs(demmv)<=.75 & demmv<0 & demmv!=. &
> demvoteshfor2!=.

. local mc=r(mean)

. rdrandinf demvoteshfor2 demmv, wl(-.75) wr(.75) p(1) evall(`mc´) evalr(`mt´)

Selected window = [-.75 ; .75]

Running randomization-based test...
Randomization-based test complete.

Inference for sharp design

Cutoff c = 0.00 Left of c Right of c Number of obs = 1390
Order of poly = 1

Number of obs 595 702 Kernel type = uniform
Eff. Number of obs 15 22 Reps = 1000

Mean of outcome 42.808 52.497 Window = set by user
S.D. of outcome 7.042 7.742 H0: tau = 0.000

Window -0.750 0.750 Randomization = fixed margins

Outcome: demvoteshfor2. Running variable: demmv.

Finite sample Large sample

Statistic T P>|T| P>|T| Power vs d = 3.52

Diff. in means 9.689 0.000 0.000 0.293

In this case, the user can verify that the point estimate is the same as when no
transformation is used: this is because the transformation comes from a linear regres-
sion that by construction passes through the means. The p-values, however, can differ.
Incidentally, note that the means are taken over the sample inside the window with non-
missing values for the outcome and the running variable. The reason is that rdrandinf
drops the observations inside the window with missing outcomes or running variables.
Similarly, rdwinselect drops, at each evaluated window, the observations with missing
values of the covariates and running variables.

8 Conclusion

We introduced and discussed the commands rdrandinf, rdwinselect, rdsensitivity,
and rdrbounds, which together offer a comprehensive and systematic set of tools to an-
alyze RD designs under a local randomization assumption. These methods complement
existing procedures based on nonparametric asymptotic approximations by providing
an alternative based on exact finite-sample results. These methods should be used only
when the local randomization assumption, possibly after transformation of outcomes,
is warranted. In these cases, our implementation can be used for both conducting in-
ference in RD designs and offering a robustness check on more conventional methods
based on nonparametric local polynomial techniques. Companion R functions are also
available from the authors.
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