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Abstract

This supplement contains theoretical proofs of the results discussed in the main paper and

additional numerical evidence. Section SA-1 provides further details of the three examples

discussed in the paper. Section SA-2 presents all the proofs. Section SA-3 gives additional

simulation evidence for the finite-sample performance of the proposed prediction intervals. Sec-

tion SA-4 provides another empirical application studying the economic impact of 1990 German

reunification on West Germany.
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SA-1 Details on Examples

This section provides more details of the three examples discussed in the main paper. Recall that

we consider the standard synthetic control constraint: W = {w ∈ RN+ : ∥w∥1 = 1} and R = RKM .

For simulation-based inference, we define explicitly a relaxed constraint set based on the original

estimated coefficients β̂: ∆⋆ = {D(β − β̂⋆) : β = (w′, r′)′,w ∈ RN+ , ∥w∥1 = ∥ŵ⋆∥1}, where

β̂⋆ = (ŵ⋆′ , r̂′)′, ŵ⋆ = (ω̂⋆2, · · · , ω̂⋆N+1)
′, ω̂⋆j = ω̂j1(|ω̂j | > ϱ), and ϱ is a tuning parameter that

ensures the constraint set in the simulation world preserves the local geometry of ∆. Moreover, we

set xT = (Y2T (0), · · · , Y(N+1)T (0))
′ as it is common in the SC literature. Finally, we let C, C⋆ and

c, with various sub-indexes, denote non-negative finite constants not depending on T0. In simple

cases, we give the exact expression of these constants, while in other cases they can be characterized

from the proofs of the results.

SA-1.1 Outcomes-only

In this example the SC weights are constructed based on past outcomes only, and the model allows

for an intercept. Thus, the working model simplifies to

at = b′
tw0 + r0 + ut, t = 1, · · · , T0,

where at := Y1t(0), bt := (Y2t(0), Y3t(0), . . . , Y(N+1)t(0))
′, and with M = 1, K = 1, and d = N + 1.

Let zt = (b′
t, 1)

′, β0 = (w′
0, r0)

′. We further assume independent sampling across time, and thus

set D = T
1/2
0 Id. A natural variance estimator in this setting is

Σ̂ =
1

T0

T0∑
t=1

ztz
′
t(ût − Ê[ut|bt])2,

where ût = at − z′tβ̂, and Ê[ut|bt] denotes some estimate of the conditional mean of the pseudo-

residuals.

The following theorem gives precise primitive conditions and verifies the high-level conditions of

Theorems 1 and 2 in the main paper. Recall that w0 = (w0,1, w0,2, . . . , w0,J)
′ is defined in Section

2 of the paper, and λmin(M) and λmax(M) are the minimum and the maximum eigenvalues of a

generic square matrix M.
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Theorem SA-1 (Outcomes-only). Let {zt, ut}Tt=1 be i.i.d over t = 1, · · · , T0.

Assume that, for finite non-negative constants η̄1, η̄2, η1 and η
2
, the following conditions hold:

(SA-1.i) max1≤t≤T0 E[|ut|3|B] ≤ η̄1 a.s. on σ(B) and E[∥zt∥6] ≤ η̄2.

(SA-1.ii) min1≤t≤T0 V[ut|B] ≥ η
1
a.s. on σ(B) and λmin(E[ztz′t]) ≥ η

2
.

Then, the conditions of Theorem 1 hold with πγ = CπT
−1
0 and ϵγ = CϵT

−1/2
0 , where Cπ = d

η̄2
+ 4d4η̄2

η2
2

and Cϵ = 42(d1/4 + 16)2
5/2d3/2η̄1η̄2
(η

1
η
2
)3/2

. Therefore, condition (T2.i) of Theorem 2 also holds, while

condition (T2.ii) holds with π⋆δ = C⋆πT
−1
0 , ϵ⋆δ = C⋆ϵT

−1
0 , and ϖ⋆

δ = C⋆ϖ
√
log T0, where C⋆π = Cπ,

C⋆ϵ = 2d, and C⋆ϖ = 8
√
dη̄1η̄2/η2.

Assume in addition that, for finite non-negative constant π⋆w, the following condition holds:

(SA-1.iii) ϱ = ϖ⋆
δ/
√
T0 and P(min{|w0,j | : w0,j ̸= 0} ≥ ϱ) ≥ 1− π⋆w.

Then, condition (T2.iii) of Theorem 2 holds with π⋆∆ = π⋆δ + π⋆w + πγ and ϵ⋆∆ = ϵ⋆δ + ϵγ.

Finally, also assume that, for finite non-negative constants ϖ⋆
u, ϵ

⋆
u and π⋆u, the following condi-

tions hold:

(SA-1.iv) max1≤t≤T0 E[|ut|4|B] ≤ η̄1 a.s. on σ(B) and E[∥zt∥12] ≤ η̄2.

(SA-1.v) P[P(max1≤t≤T0 |Ê[ut|bt]− E[ut|bt]| ≤ ϖ⋆
u|H ) ≥ 1− ϵ⋆u] ≥ 1− π⋆u.

Then, condition (T2.iv) of Theorem 2 holds with π⋆γ = C⋆π,1T
−1
0 +π⋆δ +π

⋆
u+πγ, ϵ

⋆
γ,1 = C⋆ϵ,1(T

υ−1/2
0 +

ϖ⋆
δT

−1/2
0 + ϖ⋆

u), ϵ
⋆
γ,2 = C⋆ϵ,2T

−2υ
0 + C⋆ϵ,3T

−1
0 + ϵ⋆δ + ϵ⋆u + ϵγ for any υ ∈ (0, 1/2), and non-negative

constants C⋆π,1,C
⋆
ϵ,1,C

⋆
ϵ,2 and C⋆ϵ,3, which are characterized in the proof.

SA-1.2 Multi-equation with Weakly Dependent Data

In our second example, we incorporate pre-intervention covariates in the construction of the SC

weights and allow for stationary weakly dependent time series data. We let M = 2 (two features)

and K = 0 (no additional controls) only for simplicity, which gives the working model

at,1 =
J∑
j=1

bjt,1w0,j + ut,1,

at,2 =

J∑
j=1

bjt,2w0,j + ut,2,

2



t = 1, · · · , T0. The first equation could naturally correspond to pre-intervention outcomes as in

the previous example, i.e., at,1 := Y1t(0) and bt,1 := (Y2t(0), Y3t(0), . . . , Y(N+1)t(0))
′, while the

second equation could correspond to some other covariate also used to construct ŵ as described in

Section 2 of the paper. Let bt,l = (b1t,l, · · · , bJt,l)′, for l = 1, 2. To provide interpretable primitive

conditions, we also assume ut = (ut,1, ut,2)
′ and bt = (b′

t,1,b
′
t,2)

′ follow independent first-order

stationary autoregressive (AR) processes:

ut = Huut−1 + ζt,u, Hu = diag(ρ1,u, ρ2,u),

bt = Hbbt−1 + ζt,b, Hb = diag(ρ1,b, ρ2,b, · · · , ρJ,b),

where ζt,u and ζt,b are i.i.d. over t, independent of each other, and diag(·) denotes a diagonal matrix

with the function arguments as the corresponding diagonal elements. Let D = T
1/2
0 Id and recall

that U = (u1,1, · · · , uT0,1, u1,2, · · · , uT0,2)′ in this case. A natural, generic variance estimator is

Σ̂ =
1

T0
Z′V̂[U|H ]Z,

where V̂[U|H ] is an estimate of V[U|H ]. In this example, Σ corresponds to the (conditional)

long-run variance, and naturally Σ̂ can be chosen to be any standard estimator thereof.

Because of the time dependence in this example, the following theorem gives primitive conditions

that verify the high-level conditions of Theorem A in the appendix (instead of Theorem 1) in the

paper, as well as the high-level conditions of Theorem 2 for implementation.

Theorem SA-2 (Multi-equation with Weakly Dependent Data). Let {ζt,u}Tt=1 and {ζt,b}Tt=1 be

i.i.d over t = 1, · · · , T0 with mean zero, finite variance, and independent of each other.

Assume that, for finite positive constants φ and φ′, and finite non-negative constants η̄0, η̄1, η̄2,

η
1
and η

2
, the following conditions hold:

(SA-2.i) ∥Hb∥ < 1, ∥Hu∥ < 1, and ζt,u and ζt,b have densities fu(·) and fb(·) satisfying
∫
∥x∥φfu(x)dx <

∞,
∫
∥x∥φfb(x)dx < ∞,

∫
|fu(x) − fu(x − θ)|dx ≤ η̄0∥θ∥φ

′
for all θ ∈ R2, and

∫
|fb(x) −

fb(x− θ)|dx ≤ η̄0∥θ∥φ
′
for all θ ∈ RJ .

(SA-2.ii) max1≤t≤T0 E[∥ut∥4|B] ≤ η̄1 a.s. on σ(B) and E[∥bt∥6] ≤ η̄2.

(SA-2.iii) min1≤t≤T0 λmin(V[U|B]) ≥ η
1
a.s. on σ(B) and minl=1,2 λmin(E[bt,lb′

t,l]) ≥ η
2
.
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Then, the conditions of Theorem A hold with πγ = CπT
−cπ
0 and ϵγ = CϵT

−cϵ
0 for non-negative

constants Cπ and Cϵ, and some positive constants cπ and cϵ, which are characterized in the proof.

Therefore, condition (T2.i) of Theorem 2 also holds, while condition (T2.ii) holds with π⋆δ = C⋆πT
−c⋆π
0 ,

ϵ⋆δ = C⋆ϵT
−1
0 , ϖ⋆

δ = C⋆ϖ
√
log T0 for non-negative constants C⋆π, C

⋆
ϵ and C⋆ϖ, and positive constant c⋆π,

which are also characterized in the proof.

Assume in addition that, for finite non-negative constant π⋆w, the following condition holds:

(SA-2.iv) ϱ = ϖ⋆
δ/
√
T0 and P(min{|w0,j | : w0,j ̸= 0} ≥ ϱ) ≥ 1− π⋆w.

Then, condition (T2.iii) of Theorem 2 holds with π⋆∆ = π⋆δ + π⋆w + πγ and ϵ⋆∆ = ϵ⋆δ + ϵγ.

Finally, also assume that, for finite non-negative constants ϵ⋆Σ,1, ϵ
⋆
Σ,2 and π⋆Σ, the following con-

dition holds:

(SA-2.v) P(P(∥Σ̂−Σ∥ ≤ ϵ⋆Σ,1|H ) ≥ 1− ϵ⋆Σ,2) ≥ 1− π⋆Σ.

Then, condition (T2.iv) of Theorem 2 holds with ϵ⋆γ,1 =
√
dϵ⋆Σ,1/(2η1η2), ϵ

⋆
γ,2 = ϵ⋆Σ,2 and π⋆γ =

π⋆Σ + π⋆δ .

SA-1.3 Cointegration

Our third and final example illustrates how non-stationary data can also be handled within our

framework. Suppose that for each 1 ≤ l ≤ M , {at,l}Tt=1, {b1t,l}Tt=1, · · · , {bJt,l}Tt=1 are I(1) pro-

cesses, and {c1t,l}Tt=1, · · · , {cKt,l}Tt=1 and {ut,l}Tt=1 are I(0) processes. Therefore, A and B form a

cointegrated system. For simplicity, consider the following example: for each l = 1, · · · ,M and

j = 1, · · · , J ,

at,l =

J∑
j=1

bjt,lw0,j +

K∑
k=1

ckt,lr0,k,l + ut,l,

bjt,l = bj(t−1),l + vjt,l,

where ut,l and vjt,l are stationary unobserved disturbances. In this scenario, (1,−w′
0)

′ plays the

role of a cointegrating vector such that the linear combination of A and B is stationary. The

normalizing matrix D = diag{T0, · · · , T0,
√
T0, · · · ,

√
T0}, where the first J elements are T0 and the

remaining ones are
√
T0. Let Žt = (žt,1, · · · , žt,M ) where žt,l = (ž′t,◁,l, ž

′
t,▷,l)

′ be the ((l− 1)T0+ t)th
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column of diag{T−1/2
0 IJ , IKM}Z′. We use žt,◁,l to denote the vector of the first J elements of žt,

which corresponds to the nonstationary components. The remaining vector is denoted by žt,▷,l,

which corresponds to the stationary components. Recall ut = (ut,1, · · · , ut,M )′. Write vt,l =

(v1t,l, · · · , vJt,l)′, vt = (v′
t,1, · · · ,v′

t,M )′, ct,l = (c1t,l, · · · , ckt,l)′, Ct = (ct,1, · · · , ct,M ). We allow

some elements in vt to be used in Ct. Let qt collect all distinct variables in ut, vt, ct,1, · · · , ct,M .

Moreover, define

Q◁ =
1

T0

M∑
l=1

T0∑
t=1

Gl(t/T0)Gl(t/T0)
′,

where G = (G′
1, · · · ,G′

M )′ is a mean-zero Brownian motion on [0, 1] with variance E[vtv′
t].

As in the precious example, we consider the generic variance estimator

Σ̂ =
1

T0

T0∑
t=1

ŽtV̂[ut|H ]Ž′
t,

where V̂[ut|H ] is an estimate of V[ut|H ].

The following theorem gives more primitive conditions and verifies the high-level conditions of

Theorems 1 and 2 in the paper for the cointegration scenario.

Theorem SA-3 (Cointegration). Assume that {qt}Tt=1 is i.i.d over t = 1, · · · , T0 with mean zero

and finite variance.

Assume that, for ψ ≥ 3 and finite non-negative constants η̄1, η̄2, η1, η2 and cQ, πQ,1, finite

positive constants CQ and πQ,2, and constant νQ ∈ (0, 1/2), the following conditions hold:

(SA-3.i) max1≤t≤T0 E[∥ut∥ψ|B,C] ≤ η̄1 a.s. on σ(B,C) and E[∥qt∥ψ] ≤ η̄2.

(SA-3.ii) min1≤t≤T0 λmin(V[ut|B,C]) ≥ η
1
a.s. on σ(B,C) and λmin(E[qtq′

t]) ≥ η
2
.

(SA-3.iii) P
[
(log T0)

−cQ ≤ λmin(Q◁) ≤ λmax(Q◁) ≤ (log T0)
cQ
]
≥ 1− πQ,1.

(SA-3.iv) P
[
∥ 1
T0

∑M
l=1

∑T0
t=1 žt,◁,lž

′
t,▷,l∥ ≤ CQT

−1/2+νQ
0

]
≥ 1− πQ,2.

Then, conditions (T1.i) and (T1.ii) of Theorem 1 hold with πγ = Cπ,1T
−ψν
0 +Cπ,2T

−1
0 +πQ,1+πQ,2

and ϵγ = Cϵ(log T0)
3
2
(1+cQ)T

−1/2
0 for finite non-negative constants Cπ,1, Cπ,2 and Cϵ, which are

characterized in the proof, and for any ν ∈ (0, 1/2− 1/ψ). Therefore, condition (T2.i) of Theorem

2 also holds, while condition (T2.ii) holds with ϖ⋆
δ = C⋆ϖ(log T0)

2cQ+1/2, ϵ⋆δ = C⋆ϵT
−1
0 , and π⋆δ = πγ,

for finite non-negative constants C⋆ϖ and C⋆ϵ , which are also characterized in the proof.
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Assume in addition that, for finite non-negative constant π⋆w, the following condition holds:

(SA-3.v) ϱ = ϖ⋆
δ/T0 and P(min{|w0,j | : w0,j ̸= 0} ≥ ϱ) ≥ 1− π⋆w.

Then, condition (T2.iii) of Theorem 2 holds with π⋆∆ = π⋆δ + π⋆w + πγ and ϵ⋆∆ = ϵ⋆δ + ϵγ.

Finally, also assume that, for finite non-negative constants ϵ⋆Σ,1, ϵ
⋆
Σ,2 and π⋆Σ, the following con-

dition holds:

(SA-3.vi) P(P(∥Σ̂−Σ∥ ≤ ϵ⋆Σ,1|H ) ≥ 1− ϵ⋆Σ,2) ≥ 1− π⋆Σ.

Then, condition (T2.iv) of Theorem 2 holds with ϵ⋆γ,1 = C⋆ϵ,1(log T0)
cQϵ⋆Σ,1, ϵ

⋆
γ,2 = ϵ⋆Σ,2, and π

⋆
γ =

π⋆Σ + π⋆δ , for finite non-negative constant C⋆ϵ,1, which is characterized in the proof.

SA-2 Proofs

SA-2.1 Proof of Lemma 1

Let E be the event on which

P
[
M1,L ≤ p′

T (β0 − β̂) ≤M1,U

∣∣∣ H
]
≥ 1− α1, and

P
[
M2,L ≤ eT ≤M2,U

∣∣∣ H
]
≥ 1− α2.

By assumption, P(E) ≥ 1− π1 − π2. On E , we have that

P
[
M1,L +M2,L ≤ p′

T (β0 − β̂) + eT ≤M1,U +M2,U

∣∣∣H ]
=1− P

[{
p′
T (β0 − β̂) + eT > M1,U +M2,U

}
∪{

p′
T (β0 − β̂) + eT < M1,L +M2,L

}∣∣∣H ]
≥ 1− P

[{
p′
T (β0 − β̂) > M1,U

}
∪
{
eT > M2,U

}
∪{

p′
T (β0 − β̂) < M1,L

}
∪
{
eT < M2,L

}∣∣∣H ]
≥ 1− P

[{
p′
T (β0 − β̂) > M1,U

}
∪
{
p′
T (β0 − β̂) < M1,L

}∣∣∣H ]
−

P
[{
eT > M2,U

}
∪
{
eT < M2,L

}∣∣∣H ]
.

Then, the result directly follows.
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SA-2.2 Proof of Lemma 2

By definition of β̂, (A − Zβ̂)′(A − Zβ̂) ≤ (A − Zβ0)
′(A − Zβ0), implying that δ̂′Q̂δ̂ ≤ 2γ̂ ′δ̂ =

2γ ′δ̂+2(γ̂−γ)′δ̂. On the other hand, for any βα = β0+α(β̂−β0), α ∈ (0, 1], since W×R is convex,

βα ∈ W ×R. By definition of w0, Eβ̂
[(A− Zβ0)

′(A− Zβ0)|H ] ≤ E
β̂
[(A− Zβα)

′(A− Zβα)|H ],

where E
β̂
[·|H ] denotes the expectation against the conditional distribution of (A,Z) given H

with β̂ treated as fixed. Then, we have αδ̂′Q̂δ̂ ≥ 2γ ′δ̂. Since it holds for any α ∈ (0, 1], γ ′δ̂ ≤ 0.

Consequently, we have δ̂′Q̂δ̂ ≤ 2(γ̂ − γ)′δ̂.

For any ξ1, ξ2 ∈ Rd such that supδ∈Mξ1
p′
TD

−1δ ≤ κ and supδ∈Mξ2
p′
TD

−1δ ≤ κ. Let ξ̃ =

αξ1 + (1− α)ξ2 for α ∈ [0, 1]. Consider Mξ̃ = {δ ∈ ∆ : δ′Q̂δ − 2ξ̃′δ ≤ 0}. For any δ ∈ Mξ̃,

(
αδ′Q̂δ − 2αξ′1δ

)
+
(
(1− α)δ′Q̂δ − 2(1− α)ξ′2δ

)
≤ 0.

It immediately follows that either αδ′Q̂δ − 2αξ′1δ ≤ 0 or ((1− α)δ′Q̂δ − 2(1− α)ξ′2δ) ≤ 0, which

implies that δ ∈ Mξ1 or δ ∈ Mξ2 . In either case, p′
TD

−1δ ≤ κ. Therefore, {ξ : supδ∈Mξ
p′
TD

−1δ ≤

κ} is convex. The proof for {ξ : infδ∈Mξ
p′
TD

−1δ ≥ κ} is similar.

SA-2.3 Proof of Theorem 1

We write ũt,l = ut,l − E[ut,l|H ]. Fix Q̂ and pT , define Aκ = {ξ ∈ Rd : supδ∈Mξ
p′
TD

−1δ ≤ κ}

for κ ∈ R. {γ̂ − γ ∈ Aκ} ⊆ {p′
TD

−1δ̂ ≤ κ} for any κ. By Berry-Esseen Theorem for convext sets

(Raič, 2019),

∣∣∣P(γ̂ − γ ∈ Aκ|H )− P(G ∈ Aκ|H )
∣∣∣ ≤ 42(d1/4 + 16)

T0∑
t=1

E
[∥∥∥ M∑

l=1

z̃t,lũt,l

∥∥∥3|H ]
.

Recall that z̃t,l is the (t+ (l− 1)T0)th column of Σ−1/2D−1Z′, G|H ∼ N(0,Σ), and Σ = V[γ̂|H ].

Then, by condition (T1.ii), with probability at least 1− πγ over H ,

∣∣∣P(γ̂ − γ ∈ Aκ|H )− P(G ∈ Aκ|H )
∣∣∣ ≤ ϵγ .
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It yields the desired result: for all κ,

P(p′
T (β̂ − β0) ≤ κ|H ) ≥ P(γ̂ − γ ∈ Aκ|H ) ≥ P(G ∈ Aκ|H )− ϵγ = P(ς†U ≤ κ|H )− ϵγ .

Remark SA-2.1 (Lower Bound for Theorem 1). The lower bound for p′
T (β̂−β0) follows similarly.

Specifically, under the same conditions of Theorem 1, we have

P
[
P(p′

TD
−1δ̂ ≥ c†(α)|H ) ≥ 1− (α+ ϵγ)

]
≥ 1− πγ ,

where c†(α) denotes the α-quantile of ς†L = inf{p′
TD

−1δ : δ ∈ MG} conditional on H , with

MG = {δ ∈ ∆ : ℓ†(δ) ≤ 0}, ℓ†(δ) = δ′Q̂δ − 2G′δ, and G|H ∼ N(0,Σ). ⌟

SA-2.4 Proof of Theorem 2

We first introduce some notation. Define Aκ = {ξ ∈ Rd : supδ∈M̃⋆
ξ
p′
TD

−1δ ≤ κ} where

M̃⋆
ξ =

{
δ ∈ ∆⋆ : ∥δ∥ ≤ ϖ⋆

δ , δ
′Q̂δ − 2ξ′δ ≤ 0

}
.

Accordingly, define

ς̃⋆U = sup
{
p′
TD

−1δ : δ ∈ ∆⋆, ∥δ∥ ≤ ϖ⋆
δ , ℓ

⋆(δ) ≤ 0
}
and

ς̃†U = sup
{
p′
TD

−1δ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆
δ , ℓ

†(δ) ≤ 0
}
.

Let c̃⋆(1 − α) be the (1 − α)-quantile of ς̃⋆U conditional on the data. Similarly, c̃†(1 − α) is the

(1− α)-quantile of ς̃†U conditional on H .

Let P1 = N(0, Σ̂) and P2 = N(0,Σ). Then, by Pinsker’s inequality, for any κ,

∣∣∣P(G⋆ ∈ Aκ|H ,A)− P(G ∈ Aκ|H )
∣∣∣ ≤ √

KL(P1,P2)/2,

8



where KL(·, ·) is the Kullback-Leibler divergence. Define Γ = Σ−1/2Σ̂Σ−1/2. Note that

KL(P1,P2) = −0.5 log{det(Γ )}+ 0.5 tr(Γ − I) = 0.5
d∑
j=1

(λj − log(λj + 1)),

where λj is the jth largest eigenvalue of Γ − I. By condition (T2.iv), with probability over H at

least 1− π⋆γ , it holds that with P(·|H )-probability at least 1− ϵ⋆γ,2, |λ1| ≤ 0.5 and

KL(P1,P2) ≤ 0.5
d∑
j=1

λ2j ≤ (2ϵ⋆γ,1)
2/2.

In view of condition (T2.iii), for any κ,

P
{
P
(
|P⋆(ς̃⋆U ≤ κ)− P⋆(ς̃†U ≤ κ)| ≤ ϵ⋆γ,1

∣∣∣H )
≥ 1− ϵ⋆γ,2 − ϵ⋆∆

}
≥ 1− π⋆γ − π⋆∆.

Note that by construction, c⋆(1− α) ≥ c̃⋆(1− α). Then, we have

P
{
P
(
c⋆(1− α) ≥ c̃†(1− α− ϵ⋆γ,1)

∣∣∣H )
≥ 1− ϵ⋆γ,2 − ϵ⋆∆

}
≥ 1− π⋆γ − π⋆∆. (SA-2.1)

By condition (T2.ii), with probability over H at least 1− π⋆δ ,

P
(
MG = {δ ∈ ∆ : ∥δ∥ ≤ ϖ⋆

δ , ℓ
†(δ) ≤ 0}

∣∣∣H )
≥ 1− ϵ⋆δ ,

which implies that for any κ, P(ς̃†U ≤ κ|H ) ≤ P(ς†U ≤ κ|H ) + ϵ⋆δ . Thus,

P
{
P
(
c̃†(1− α− ϵ⋆γ,1) ≥ c†(1− α− ϵ⋆γ,1 − ϵ⋆δ)

∣∣∣H )}
≥ 1− π⋆δ . (SA-2.2)

Therefore, on an event A ∈ H with P(A) ≥ 1− πγ − π⋆γ − π⋆∆ − π⋆δ ,

P
(
p′
T (β̂ − β0) ≤ c⋆(1− α)

∣∣∣H )
≥ P

(
p′
TD

−1δ̂ ≤ c̃†(1− α− ϵ⋆γ,1)
∣∣∣H )

− ϵ⋆γ,2 − ϵ⋆∆

≥ P
(
p′
TD

−1δ̂ ≤ c†(1− α− ϵ⋆γ,1 − ϵ⋆δ)
∣∣∣H )

− ϵ⋆γ,2 − ϵ⋆∆

≥ 1− α− ϵ⋆γ,1 − ϵ⋆δ − ϵγ − ϵ⋆γ,2 − ϵ⋆∆,

where the first line follows by inequality (SA-2.1), the second by inequality (SA-2.2), and the third

9



by condition (T2.i). Then the proof is complete.

Remark SA-2.2 (Lower Bound for Theorem 2). The lower bound for p′
T (β̂−β0) follows similarly.

Specifically, we replace condition (T2.i) in Theorem 2 with P[P(p′
TD

−1δ̂ ≥ c†(α)|H ) ≥ 1−α−ϵγ ] ≥

1− πγ , and the other conditions in Theorem 2 remain the same. Under these conditions, we have

for ϵγ ∈ [0, 0.25],

P
[
P(p′

TD
−1δ̂ ≥ c⋆(α)|H ) ≥ 1− α− ϵ

]
≥ 1− π,

where c⋆(α) denotes the α-quantile of ς⋆L = inf{p′
TD

−1δ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0} conditional on the

data. π and ϵ are defined as in Theorem 2. ⌟

SA-2.5 Proof of Theorem A

Throughout this proof, we write b(·) := b(·;H ) and assume ut is correctly centered, i.e., E[ut|H ] =

0, only for ease of notation. Let ∥v∥∞ denote the sup-norm of a generic vector v. As in the proof

of Theorem 1, fix Q̂ and pT , define Aκ = {ξ ∈ Rd : supδ∈Mξ
p′
TD

−1δ ≤ κ} for each κ ∈ R. Since

{γ̂ − γ ∈ Aκ} ⊆ {p′
T (β̂ − β0) ≤ κ} for any κ,

P(p′
T (β̂ − β0) ≤ κ|H ) ≥ P(γ̂ − γ ∈ Aκ|H ).

It suffices to approximate P(γ̂ − γ ∈ Aκ|H ).

According to the blocking design, let hk = (ut)t∈Jk and ℏℏℏk = (ut)t∈J ′
k
be vectors that contain

all ut’s with t in Jk and J ′
k respectively. By Berbee’s coupling lemma (Berbee, 1987), on an

enlarged probability space, there exists {h∗
k}mk=1 that is independent over k conditional on H such

that for each k, hk and h∗
k are identically distributed (conditional on H ), and P(hk ̸= h∗

k|H ) ≤

b(v). Similarly, on an enlarged probability space, there exists {ℏℏℏ∗k}mk=1 that is independent over k

conditional on H such that for each k, ℏℏℏk and ℏℏℏ∗k are identically distributed (conditional on H )

and P(ℏℏℏk ̸= ℏℏℏ∗k|H ) ≤ b(q). Let u∗
t be the vector in h∗

k and ℏℏℏ∗k that corresponds to ut. Accordingly,

s∗t is the same as st except that ut is replaced by u∗
t . Also, S

∗
k,□ =

∑
t∈Jk s

∗
t and S∗

k,⋄ =
∑

j∈J ′
k
s∗t .

By the coupling argument, we have

P
(
γ̂ − γ ∈ Aκ|H

)
≤ P

(∥∥∥ m∑
k=1

Sk,⋄

∥∥∥
∞

≥ ξ1

∣∣∣H )
+ P

(∥∥∥Sm+1,1

∥∥∥
∞

≥ ξ2

∣∣∣H )
+

10



P
( m∑
k=1

Sk ∈ Aξ1+ξ2
κ

∣∣∣H )
≤ P

(∥∥∥ m∑
k=1

S∗
k,⋄

∥∥∥
∞

≥ ξ1

∣∣∣H )
+ P

(∥∥∥Sm+1,1

∥∥∥
∞

≥ ξ2

∣∣∣H )
P
( m∑
k=1

S∗
k,□ ∈ Aξ1+ξ2

κ

∣∣∣H )
+mb(v) +mb(q)

=: I + II + III +mb(v) +mb(q),

where Aξ1+ξ2
κ = {v : ρ(v,Aκ) ≤ ξ1 + ξ2} is the (ξ1 + ξ2)-enlargement of Aκ for ξ1, ξ2 ≥ 0 and

ρ(v,Aκ) = infv′∈Aκ ∥v − v′∥.

For I, by Markov’s inequality, condition (TA.ii), and Lemma 8 of Chernozhukov, Chetverikov

and Kato (2015), for some absolute constant C1 > 0, for any ξ1 > 0,

P
(∥∥∥ m∑

k=1

S∗
k,⋄

∥∥∥
∞

≥ ξ1

∣∣∣H )
≤ C1ξ

−1
1

(√
mvσ̄2 log d+ η

1/ψ
1 log d

)
,

where we use the fact that

(E[( max
1≤k≤m

∥S∗
k,⋄∥∞)2|H ])1/2 ≤ (E[ max

1≤j≤d
max

1≤k≤m
|S∗
jk,⋄|ψ|H ])1/ψ

≤
(
E
[ d∑
j=1

m∑
k=1

|Sjk,⋄|ψ
∣∣∣H ])1/ψ

≤ η
1/ψ
1 ,

which holds with probability over H at least 1−πγ,1. Taking ξ1 = C1η
−1
6

(√
mvσ̄2 log d+η

1/ψ
1 log d

)
,

we have I ≤ η6.

For II, take ξ2 = (dη2)
1/ψη

−1/ψ
6 . By Markov’s inequality and condition (TA.iii), with probability

over H at least 1− πγ,2,

II ≤ d max
1≤j≤d

P
(∣∣∣ ∑

t∈Jm+1

sjt

∣∣∣ ≥ ξ2|H
)
≤ max

1≤j≤d

E[|
∑

t∈Jm+1
sjt|ψ|H ]η6

η2
≤ η6.

For III, since Aξ1+ξ2
κ is also convex and {S∗

k,□} is independent over k, repeating the argument

in the proof of Theorem 1 and using condition (TA.iv), we have that for any ξ1 > 0 and ξ2 > 0,
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with probability over H at least 1− πγ,3,

∣∣∣III − P(G□ ∈ Aξ1+ξ2
κ |H )

∣∣∣ ≤ 42(d1/4 + 16)
m∑
k=1

E
[∥∥∥Σ−1/2

□ Sk,□

∥∥∥3∣∣∣H ]
≤ η3

for G□|H ∼ N(0,Σ□).

Combining the results above, we have with probability over H at least 1− πγ,1 − πγ,2 − πγ,3,

P
(
γ̂ − γ ∈ Aκ|H

)
≤ P

(
G□ ∈ Aξ1+ξ2

κ

∣∣∣H )
+ 5η6.

On the other hand, for any ξ > 0, define

A−ξ
κ =

{
h : B(h, ξ) ⊆ Aκ

}
.

Suppose that A−ξ1−ξ2
κ ̸= ∅. Note that for any h1,h2 ∈ A−ξ

κ and ω ∈ [0, 1], define h′ = ωh1+(1−

ω)h2. For any h′′ ∈ B(h′, ξ),

h′′ = h′ + (h′′ − h′) = ω(h1 + (h′′ − h′)) + (1− ω)(h2 + (h′′ − h′)).

Since ∥h′′ − h′∥ ≤ ξ, h1 + (h′′ − h′) ∈ B(h1, ξ) ⊆ Aκ. Similarly, h2 + (h′′ − h′) ∈ Aκ. Therefore,

h′′ ∈ Aκ. Since it holds for arbitrary h′′ ∈ B(h′, ξ), A−ξ
κ is convex. Then, repeat the coupling

argument and apply the Berry-Esseen inequality again. We have the following inequalities hold

with probability over H at least 1− πγ,3:

P(G□ ∈ A−(ξ1+ξ2)
κ |H )− η3 ≤ P

( m∑
k=1

S∗
k,□ ∈ A−(ξ1+ξ2)

κ

∣∣∣H )
≤P

( m∑
k=1

Sk,□ ∈ A−(ξ1+ξ2)
κ

∣∣∣H )
+mb(v)

≤P
(
γ̂ − γ ∈ Aκ

∣∣∣H )
+ P

(∥∥∥ m∑
k=1

Sk,⋄

∥∥∥
∞

≥ ξ1

∣∣∣H )
+ P

(∥∥∥Sm+1,⋄

∥∥∥
∞

≥ ξ2

∣∣∣H )
+mb(v).

Using the bounds obtained previously, the above implies that with probability over H at least
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1− πγ,1 − πγ,2 − πγ,3,

P(γ̂ − γ ∈ Aκ|H ) ≥ P(G□ ∈ A−(ξ1−ξ2)
κ |H )− 5η6.

By condition (TA.v) and Anti-Concentration of the Gaussian measure for convex sets (see, e.g.,

Lemma A.2 of Chernozhukov, Chetverikov, Kato et al. (2017)), for some absolute constant C2 > 0,

with probability over H at least 1− πγ,4,

P(G□ ∈ Aξ1+ξ2
κ |H ) ≤ P(G□ ∈ Aκ|H ) + C2dη4(ξ1 + ξ2), and

P(G□ ∈ A−(ξ1+ξ2)
κ |H ) ≥ P(G□ ∈ Aκ)− C2dη4(ξ1 + ξ2).

The result for A−(ξ1+ξ2)
κ = ∅ trivially follows. Then, we have with probability over H at least

1− πγ,1 − πγ,2 − πγ,3 − πγ,4,

∣∣∣P(γ̂ − γ ∈ Aκ|H )− P(G□ ∈ Aκ|H )
∣∣∣ ≤ 5η6 + C2dη4(ξ1 + ξ2) ≤ C3η6

for some constant C3 > 0.

Finally, as in the proof of Theorem 2, letting P1 = N(0,Σ) and P2 = N(0,Σ□), by Pinsker’s

inequality, for any κ,

∣∣∣P(G ∈ Aκ|H )− P(G□ ∈ Aκ|H )
∣∣∣ ≤ √

KL(P1,P2)/2,

where

KL(P1,P2) = −0.5 log{det(Γ )}+ 0.5 tr(Γ − I) = 0.5
d∑
j=1

(λj − log(λj + 1)),

where Γ = Σ
−1/2
□ ΣΣ

−1/2
□ and λj is the jth largest eigenvalue of Γ − I. By condition (TA.vi), with

probability over H at least 1− πγ,5, |λ1| ≤ 0.5 and

KL(P1,P2) ≤ 0.5
d∑
j=1

λ2j ≤ (2η5)
2/2.

Then the desired result follows.
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Remark SA-2.3 (Lower Bound for Theorem A). The lower bound for p′
TD

−1δ̂ follows similarly.

Specifically, under the same conditions of Theorem A, we have for η5 ∈ [0, 0.25]

P
[
P(p′

TD
−1δ̂ ≥ c†(α)|H ) ≥ 1− α− ϵγ

]
≥ 1− πγ ,

where c†(α) denotes the α-quantile of ς†L = inf{p′
TD

−1δ : δ ∈ MG} conditional on H , with

MG = {δ ∈ ∆ : ℓ†(δ) ≤ 0}, ℓ†(δ) = δ′Q̂δ − 2G′δ, and G|H ∼ N(0,Σ). ϵγ and πγ are defined as

in Theorem A. ⌟

SA-2.6 Proof of Theorem SA-1

Note that given the assumption, conditional on B, bT is independent of the pre-treatment data.

Therefore, when we verify the conditions of Theorems 1 and 2, the analysis conditional on H is

the same as that conditional on B only.

(1) We first verify the conditions of Theorem 1. Condition (T1.i) trivially holds. To show

condition (T1.ii), we note by condition (SA-1.i), with probability (over H ) one,

E
[
∥z̃tũt∥3

∣∣∣H ]
≤ ∥z̃t∥3E[|ũt|3|H ] ≤ η̄1∥z̃t∥3.

for any t. Then, it suffices to bound

T0∑
t=1

∥z̃t∥3 ≤ ∥Σ−1/2∥3
(

1

T
3/2
0

T0∑
t=1

∥zt∥3
)
.

Note that 1
T0

∑T0
t=1 ∥zt∥3 ≤

√
d

T0

∑T0
t=1

∑d
j=1 |zjt|3 where zjt is the jth element of zt. By Markov’s

inequality,

P
(∣∣∣ 1
T0

T0∑
t=1

|zjt|3 − E[|zjt|3]
∣∣∣ ≥ η̄2

)
≤ 1

T0η̄2
.

Thus, with probability at least 1−d(η̄2T0)−1, 1
T0

∑T0
t=1

∑d
j=1 |zjt|3 ≤ 2dη̄2, and then 1

T0

∑T0
t=1 ∥zt∥3 ≤

2d3/2η̄2.

On the other hand, by the lower bound on the conditional variance of ut, λmin(Σ) ≥ η
1
λmin(Q̂).
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By Markov’s inequality and union bounds,

P
(∥∥∥ 1

T0

T0∑
t=1

ztz
′
t − E[ztz′t]

∥∥∥
F
≥ dη

2
/(2d)

)
≤ 4d4η̄2

η2
2
T0

.

It follows that λmin(Σ) ≥ η
1
η
2
/2 with probability over H at least 1 − 4d4η̄2

η2
2
T0

. Then, condition

(T1.ii) holds.

(2) Now, we verify the conditions of Theorem 2. Condition (T2.i) follows by part (1). For

conditions (T2.ii) and (T2.iii), note that δ ∈ MG implies that

λmin(Q̂)∥δ∥2 ≤ δQ̂δ ≤ 2G′δ ≤ 2∥G∥∥δ∥. (SA-2.3)

Let σ2max be the largest diagonal element of Σ. Note that for Gaussian random variables,

P
(
∥G∥ ≥

√
2d log T0σmax

∣∣∣H )
≤ 2d exp

(
− 2σ2max log T0

2σ2max

)
≤ 2d/T0.

On the other hand, note that by Markov’s inequality and union bounds,

P
(

max
1≤j≤d

∣∣∣ 1
T0

T0∑
t=1

z2jt − E[z2jt]
∣∣∣ ≥ η̄2

)
≤ dη̄2
η̄22T0

.

Thus, σ2max ≤ 2η̄2η̄1 with probability over H at least 1− d
η̄2T0

.

Using the results in part (1), we have for δ ∈ MG, with probability over H at least 1−4d4η̄2
η2
2
T0

− d
η̄2T0

,

P
(
∥δ∥ ≤ 8

√
d log T0η̄1η̄2

η
2

∣∣∣H )
≥ 1− 2d

T0
.

Thus, condition (T2.ii) holds.

For condition (T2.iii), we note that δ̂ satisfies the same basic inequality (SA-2.3) except G needs

to be replaced by γ̂ − γ. Noting condition (T1.ii) proved in part (1), we can see the same (upper)

bound also holds for δ̂ with P(·|H )-probability at least 1 − 2d/T0 − ϵγ , with probability over H

at least 1− 4d4η̄2
η2
2
T0

− d
η̄2T0

− πγ .
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Finally, consider the variance estimator Σ̂. Since ∥Σ−1/2Σ̂Σ−1/2 − I∥ ≤ λmin(Σ)−1∥Σ̂−Σ∥,

tr
[
(Σ−1/2Σ̂Σ−1/2 − I)2

]
≤ dλmin(Σ)−2∥Σ̂−Σ∥2.

Σ̂−Σ can be decomposed into two parts. First consider 1
T0

∑T0
t=1 ztz

′
tũ

2
t −Σ = 1

T0

∑T0
t=1 ztz

′
t(ũ

2
t −

σ2t ) for ũt = ut − E[ut|bt] and σ2t = E[ũ2t |bt]. Applying Markov’s inequality again, we have with

probability over H at least 1− d2

η̄2T0
, max1≤j,j′≤d

1
T0

∑T0
t=1 z

2
jtz

2
j′t ≤ 2η̄2. Then, it follows by Markov’s

inequality and condition (SA-1.iv) that with probability over H at least 1− d2

η̄2T0
,

P
(∥∥∥ 1

T0

T0∑
t=1

ztz
′
t(ũ

2
t − σ2t )

∥∥∥
F
≥ d

T
1/2−υ
0

∣∣∣H )
≤ d2η̄1T

1−2υ
0

T0
max

1≤j,j′≤d

1

T0

T0∑
t=1

z2jtz
2
j′t ≤

2d2η̄1η̄2
T 2υ
0

.

Next, note that

(ût − Ê[ut|bt])2 − ũ2t

=
(
(ût − ut)− (Ê[ut|bt]− E[ut|bt])

)(
ût + ut − Ê[ut|bt]− E[ut|bt]

)
=
(
z′t(β0 − β̂)− (Ê[ut|bt]− E[ut|bt])

)(
z′t(β0 − β̂) + 2ut − Ê[ut|bt]− E[ut|bt]

)
= : qt(qt + 2ũt).

Write qt = qt,1 + qt,2, qt,1 = z′t(β0 − β̂), and qt,2 = Ê[ut|bt]− E[ut|bt]. Then,

∥∥∥ 1

T0

T0∑
t=1

ztz
′
t

(
(ût − Ê[ut|bt])2 − ũ2t

)∥∥∥ =
∥∥∥ 1

T0

T0∑
t=1

ztz
′
t(q

2
t + 2qtũt)

∥∥∥
≤

∥∥∥ 1

T0

T0∑
t=1

ztz
′
tq

2
t

∥∥∥+ 2
∥∥∥ 1

T0

T0∑
t=1

ztz
′
tũtqt

∥∥∥.
For the first term,

∥∥∥ 1

T0

T0∑
t=1

ztz
′
tq

2
t

∥∥∥ ≤ 2
∥∥∥ 1

T0

T0∑
t=1

ztz
′
tq

2
t,1

∥∥∥+ 2
∥∥∥ 1

T0

T0∑
t=1

ztz
′
tq

2
t,2

∥∥∥
≤ 2

∥∥∥ 1

T0

T0∑
t=1

ztz
′
t∥zt∥2

∥∥∥∥β0 − β̂∥2 + 2
∥∥∥ 1

T0

T0∑
t=1

ztz
′
t

∥∥∥ max
1≤t≤T0

q2t,2.

Using the bound on δ̂ explained before and condition (SA-1.v), we have with probability over H

16



at least 1−C′
1/T0−π⋆δ −πγ−π⋆u, P(∥

1
T0

∑T0
t=1 ztz

′
tq

2
t ∥ ≤ C1((ϖ

⋆
δ )

2/T0+(ϖ⋆
u)

2)|H ) ≥ 1− ϵ⋆δ− ϵγ− ϵ⋆u

for some constants C1 > 0 and C′
1 > 0.

For the second term,

2
∥∥∥ 1

T0

T0∑
t=1

ztz
′
tũtqt

∥∥∥ ≤ 2
∥∥∥ 1

T0

T0∑
t=1

ztz
′
tũtqt,1

∥∥∥+ 2
∥∥∥ 1

T0

T0∑
t=1

ztz
′
tũtqt,2

∥∥∥
≤

(∥∥∥ 1

T0

T0∑
t=1

ztz
′
t∥zt∥

∥∥∥+
∥∥∥ 1

T0

T0∑
t=1

ztz
′
t∥zt∥ũ2t

∥∥∥)∥β̂ − β0∥

+ max
1≤t≤T0

|qt,2|
(∥∥∥ 1

T0

T0∑
t=1

ztz
′
t

∥∥∥+
∥∥∥ 1

T0

T0∑
t=1

ztz
′
tũ

2
t

∥∥∥).
Note that we use the fact that for any number a, 2|a| ≤ 1+a2. Using the previous argument again,

we have with probability over H at least 1 − C′
2T

−1
0 − π⋆δ − πγ − π⋆u, with P(·|H )-probability at

least 1− C′′
2T

−1
0 − ϵ⋆δ − ϵγ − ϵ⋆u, the above is bounded by C2(ϖ

⋆
δ/
√
T0 +ϖ⋆

u) for some constants C2,

C′
2, and C′′

2. Then, the result follows.

SA-2.7 Proof of Theorem SA-2

Throughout this proof, C1, c1, · · · denote some constants independent of T0. By assumption, the

analysis conditional on H can be replaced by that conditional on B.

(1) We first verify the conditions of Theorem A. Under condition (T4.i), by Theorem 3.1 of

Pham and Tran (1985), ut is β-mixing at an exponential rate b(k) := b(k;H ) = exp(−c1k) (even

conditional on H ). Similarly, bt is also β-mixing at an exponential rate exp(−c2k).

For condition (TA.ii) of Theorem A, let ρ = ρu,1 ∧ ρu,2 and σ2 = E[ζ2t,u,1] ∨ E[ζ2t,u,2] where

ζt,u = (ζt,u,1, ζt,u,2)
′. Note that

σ̄2(v) = max
1≤j≤d

1

T0vm

m∑
k=1

V
[ ∑
t∈J ′

k

(bjt,1ut,1 + bjt,2ut,2)
∣∣∣B]

≤ max
1≤j≤d

2

T0vm

2∑
l=1

m∑
k=1

{ ∑
t∈J ′

k

σ2

1− ρ2
b2jt,l +

v−1∑
ℓ=1

( ∑
t−t′=ℓ
t,t′∈J ′

k

bjt,lbjt′,l

) ρℓσ2

1− ρ2

}

≤ max
1≤j≤d

2

T0vm

2∑
l=1

m∑
k=1

{ ∑
t∈J ′

k

σ2

1− ρ2
b2jt,l + 2

v−1∑
ℓ=1

( ∑
t∈J ′

k

b2jt,l

) |ρ|ℓσ2

1− ρ2

}
.
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It is bounded by C1T
−1
0 with probability over H at least 1−c3m

−1, since by the coupling argument

used in the proof of Theorem A and Markov’s inequality,

P
(∣∣∣ 1

vm

m∑
k=1

∑
t∈J ′

k

(b2jt,l − E[b2jt,l])
∣∣∣ ≥ η̄1

)
≤ 1

η̄21m
2

m∑
k=1

1

v2
E
[( ∑

t∈J ′
k

(bjt,l − E[bjt,l])
)2]

+m exp(−c2q)

which is bounded by c4m
−1 for some c4 large enough.

On the other hand, for ψ = 3, we have

E
[ d∑
j=1

m∑
k=1

|Sjk,⋄|ψ
∣∣∣H ]

= E
[ d∑
j=1

m∑
k=1

∣∣∣ ∑
t∈J ′

k

sjt

∣∣∣3∣∣∣H ]

≤ 4mdT
−3/2
0

1

md

d∑
j=1

m∑
k=1

2∑
l=1

E
[∣∣∣ ∑
t∈J ′

k

bjt,lut,l

∣∣∣3|H ]

≤ 4mdT
−3/2
0

1

md

d∑
j=1

m∑
k=1

2∑
l=1

max
{ ∑
t∈J ′

k

(E[|bjt,lut,l|4|H ])
3
4 ,

( ∑
t∈J ′

k

(E[|bjt,lut,l|3|H ])
2
3

) 3
2
}
.

The second line uses Hölder’s inequality, and the third line uses Rosenthal inequality for strong

mixing sequences (see, e.g., Theorem 2 in Section 1.4 of Doukhan (2012)) and the fact that β-mixing

implies strong mixing. Again, by the coupling argument and Markov’s inequality, with probability

over H at least 1− c5m
−1, the last line is bounded by η1 := C2m(v/T0)

3/2.

For condition (TA.iii), note that by Rosenthal inequality,

max
1≤j≤d

E
[
|Sj(m+1),⋄|3

∣∣∣H ]
≤ max

1≤j≤d
4T

−3/2
0

2∑
l=1

E
[∣∣∣ ∑
t∈J ′

m+1

bjt,lut,l

∣∣∣3|H ]

≤ max
1≤j≤d

4T
−3/2
0

2∑
l=1

max
{ ∑
t∈J ′

m+1

(E[|bjt,lut,l|4|H ])
3
4 ,

( ∑
t∈J ′

m+1

(E[|bjt,lut,l|3|H ])
2
3

) 3
2
}
.

Applying Markov’s inequality to
∑

t∈J ′
m+1

|bjt,l|3 and
∑

t∈J ′
m+1

|bjt,l|2, by the moment conditions

imposed, we have max1≤j≤d E[|Sj(m+1),⋄|3|H ] is bounded by η2 := C3(q/T0)
3/2T c6

0 with probability

over H at least 1− c7T
−2c6
0 for any small c6 > 0.
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For condition (TA.iv), note that by Hölder’s inequality and Rosenthal inequality,

m∑
k=1

E[∥Sk,□∥3|H ] =
1√
T0

m

T0

1

m

m∑
k=1

E
[( d∑

j=1

( 2∑
l=1

∑
t∈Jk

bjt,lut,l

)2)3/2∣∣∣H ]

≤ 4d3/2√
T0

m

T0

1

m

m∑
k=1

1

d

d∑
j=1

2∑
l=1

E
[∣∣∣ ∑
t∈Jk

bjt,lut,l

∣∣∣3∣∣∣H ]

≤ 4C4d
3/2

√
T0

m

T0

1

m

m∑
k=1

1

d

d∑
j=1

2∑
l=1

max
{ ∑
t∈Jk

(E[|bjt,lut,l|4|H ])
3
4 ,

( ∑
t∈Jk

(E[|bjt,lut,l|3|H ])
2
3

) 3
2
}
.

Again, by the coupling argument and Markov’s inequality, the last term is bounded by C5m
−1/2

with probability over H at least 1− c8m
−1.

On the other hand,

λmin(Σ□) = λmin

( m∑
k=1

V[Sk,□|H ]
)
≥ η

1
λmin

( 1

T0

m∑
k=1

2∑
l=1

∑
t∈Jk

bt,lb
′
t,l

)

Note that the minimum eigenvalue of E[1q
∑2

l=1

∑
t∈Jk bt,lb

′
t,l] =

∑2
l=1 E[bt,lb′

t,l] is bounded from

below by 2η
2
. Then, by the coupling argument, with probability over H at least 1−c9m

−1, the last

term is bounded from below by η
1
η
2
. Therefore, we can set η3 = C6m

−1/2. The above argument

also shows that condition (TA.v) holds with η4 = η
1
η
2
.

For condition (TA.vi), note that

Σ = V
[ 1√

T0

( 2∑
l=1

m∑
k=1

∑
t∈Jk

bt,lut,l +

2∑
l=1

m+1∑
k=1

∑
t∈J ′

k

bt,lut,l

)∣∣∣H ]

=
1

T0
V
[ 2∑
l=1

m∑
k=1

∑
t∈Jk

bt,lut,l

∣∣∣H ]
+

1

T0
V
[ 2∑
l=1

m+1∑
k=1

∑
t∈J ′

k

bt,lut,l

∣∣∣H ]
+

2

T0
Cov

[ 2∑
l=1

m∑
k=1

∑
t∈Jk

bt,lut,l,

2∑
l=1

m+1∑
k=1

∑
t∈J ′

k

bt,lut,l

∣∣∣H ]

= Σ□ +
2

T0

∑
k,k′
k<k′

Cov
[ 2∑
l=1

∑
t∈Jk

bt,lut,l,
2∑
l=1

∑
t∈Jk

bt,lut,l

∣∣∣H ]
+
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1

T0
V
[ 2∑
l=1

m+1∑
k=1

∑
t∈J ′

k

bt,lut,l

∣∣∣H ]
+

2

T0
Cov

[ 2∑
l=1

m∑
k=1

∑
t∈Jk

bt,lut,l,

2∑
l=1

m+1∑
k=1

∑
t∈J ′

k

bt,lut,l

∣∣∣H ]
= Σ□ + 2I + II + 2III.

We consider a generic (j, j′)th element in Σ. For I, the (j, j′)th element can be bounded as follows:

|I[j, j′]| :=
∣∣∣ 1
T0

∑
k,k′
k<k′

∑
t∈Jk,
t′∈Jk′

2∑
l=1

2∑
l′=1

bjt,lbj′t′,l′Cov[ut,l, ut′,l′ |H ]
∣∣∣

≤ 1

T0

∑
k,k′
k<k′

∑
t∈Jk
t′∈Jk′

2∑
l=1

(b2jt,l + b2j′t′,l)|ρ||t−t
′|σ2/(1− ρ2)

=
σ2

1− ρ2

{ 1

T0

m−1∑
k=1

∑
t∈Jk

( 2∑
l=1

b2jt,l

) ∑
k′:k′>k

∑
t′∈Jk′

|ρ||t−t′|+

1

T0

m∑
k′=2

∑
t′∈Jk′

( 2∑
l=1

b2j′t′,l

) ∑
k:k<k′

∑
t∈Jk

|ρ||t−t′|
}
.

Note that by the property of geometric series and the moment condition,

E
[ 1

T0

m−1∑
k=1

∑
t∈Jk

( 2∑
l=1

b2jt,l

) ∑
k′:k′>k

∑
t′∈Jk′

|ρ||t−t′|
]
≤ C7|ρ|v/q.

Also note that by coupling argument, the moment condition, and Markov’s inequality,

P
( 1

T0

m−1∑
k=1

∑
t∈Jk

( 2∑
l=1

(b2jt,l − E[b2jt,l])|ρ|t−(k−1)q+v+1
)
≥ |ρ|v/q

)
≤ c10m

−1.

The second term in the decomposition of I can be treated similarly. Therefore, with probability

over H at least 1− c11m
−1, ∥I∥ ≤ C8|ρ|v/q.

Regarding II, the covariance between blocks can be analyzed exactly the same way as above,

and the analysis of the sum of variance of each blocks is similar to that of σ̄2(v). It follows that

with probability over H at least 1 − c12m
−1, ∥II∥ ≤ C9(v/q +m−1 + |ρ|q/q). The analysis of III

is similar to that of I, yielding that with probability over H at least 1− c13m
−1, ∥III∥ ≤ C10q

−1.

Using these results, we conclude that ∥Σ−Σ□∥ ≤ C11(v/q +m−1) =: η5 with probability over H

at least 1− c14m
−1. Then, condition (TA.vi) holds. Also note that when q/v and m are sufficiently
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large, η5 ≤ 0.25. As specified below, this is true when T0 is large enough.

Finally, to satisfy condition (TA.vii), we can take m = C12T
2/5
0 , v = C13T

c15
0 , and let c6 and c15

be sufficiently small. Then, we can take η6 = C14T
−3/20−c16
0 for sufficiently small c16. The proof for

the first part is complete.

(2) Next, we consider Theorem 2. Condition (T2.i) holds by the argument given in part (1) of

this proof. As in the proof of Theorem SA-1, conditions (T2.ii) and (T2.iii) of Theorem 2 can be

verified using the basic inequality

λmin(Q̂)∥δ∥2 ≤ δQ̂δ ≤ 2G′δ ≤ 2∥G∥∥δ∥.

It has been shown in part (1) that the minimum eigenvalue of Q̂ is bounded from below by some

constant with probability over H at least 1 − c9m
−1. On the other hand, let σ2max be the largest

diagonal element of Σ. Note that for Gaussian random variables,

P
(
∥G∥ ≥

√
2d log T0σmax

∣∣∣H )
≤ 2d exp

(
− 2σ2max log T0

2σ2max

)
≤ 2d/T0.

By the argument given in part (1), we have with probability over H at least 1− c9m
−1 − c14m

−1,

σ2max is bounded by some constant. Then, conditions (T2.ii) and (T2.iii) hold.

For condition (T2.iv), since

tr
[
(Σ−1/2Σ̂Σ−1/2 − I)2

]
≤ dλmin(Σ)−2∥Σ̂−Σ∥2.

The result follows by the lower bound on the minimum eigenvalue of Σ and the assumption imposed

in the theorem.

SA-2.8 Proof of Theorem SA-3

Throughout this proof, C1, c1, · · · denote some constants independent of T0. First note that given

the assumptions on {ut,l} and {vjt,l}, conditional on B, pT is independent of the pre-treatment

data. Therefore, when we verify the conditions of Theorems 1 and 2, the analysis conditional on

H is the same as that conditional on B and C only.

(1) We consider Theorem 1 first. Condition (T1.i) directly follows from the assumptions on qt.
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For condition (T1.ii), as in the proof of Theorem SA-1, we only need to bound 1

T
3/2
0

∑T0
t=1

∑M
l=1 ∥žt,l∥3

and ∥Σ−1∥. First consider 1
T0

∑T0
t=1

∑M
l=1 ∥žt,l∥3. Note that

1

T0

T0∑
t=1

M∑
l=1

∥žt,l∥3 ≤
√
d

T0

T0∑
t=1

M∑
l=1

d∑
j=1

|žjt,l|3,

where žjt,l is the jth element of žt,l.

For the stationary components, i.e., {ckt,l}, since the third moment is bounded, by Markov’s

inequality, with probability over H at least 1− c1T
−1
0 , 1

T0

∑M
l=1

∑d
j=J+1

∑T0
t=1 |z̃jt,l|3 ≤ C1.

On the other hand, note that the non-stationary components žt,◁,l can be understood as a mul-

tivariate partial sum process indexed by t. Write Ž◁(t) = (ž′t,◁,1, · · · , ž′t,◁,M )′. By strong approxi-

mation of partial sum processes, for any 0 < ν < 1/2− 1/ψ,

P
(

max
1≤t≤T0

∥Ž◁(t)−G(t/T0)∥ ≥ T
− 1

2
+ 1
ψ
+ν

0

)
≤ C2T

−ψν
0 ,

where G(·) = (G1(·)′, · · · ,GM (·)′)′ is a (JM)-dimensional Brownian motion on [0, 1] with the

variance E[vtv′
t]. On the other hand, it is well known that for each 1 ≤ j ≤ J , 1 ≤ l ≤M , for any

m > 0,

P( max
0≤r≤1

|Gj,l(r)| > m) ≤ 2P( max
0≤r≤1

Gj,l(r) > m) = 2P(|Gj,l(1)| > m),

where Gj,l(·) is the jth element of Gl(·). Using the tail bound for Gaussian distributions, we can

set m =
√
2 log(2JMT0)σ2max where σ2max is the largest variance of {vjt,l : 1 ≤ j ≤ J, 1 ≤ l ≤ M},

which leads to max0≤r≤1 |Gj,l(r)| ≤ m with probability over H at least 1− (JMT0)
−1. Therefore,

we conclude that

1

T0

T0∑
t=1

M∑
l=1

J∑
j=1

|žjt,l|3 ≤ C3

(√
2 log(2JMT0)σ2max + C2T

1
ψ
− 1

2
+ν

0

)3

with probability over H at least 1− T−1
0 − c2T

−ψν
0 .

Finally, we consider Σ. By assumption in the theorem, λmin(Σ) ≥ η
1
Q̂. Partition Q̂ into

[
Q̂11 Q̂12

Q̂12 Q̂22

]
.
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Q̂11 ∈ RJ×J corresponds to the Gram of the non-stationary component:

Q̂11 =

M∑
l=1

( 1

T

T0∑
t=1

žt,◁,lž
′
t,◁,l

)
.

Again, by strong approximation used previously, with probability over H at least 1−c2T
−ψν
0 −T−1

0 ,

∥∥∥∥ 1

T0

T0∑
t=1

žt,◁,lž
′
t,◁,l −

1

T0

T0∑
t=1

Gl

( t

T0

)
Gl

( t

T0

)′
∥∥∥∥ ≤ C4T

1
ψ
− 1

2
+ν

0

√
log T0.

Then, by the condition in the theorem, with probability over H at least 1− c2T
−ψν
0 − T−1

0 − πQ,1,

λmin(Q̂11) ≥ (log T0)
−cQ/2 for T0 large enough so that C4T

1
ψ
− 1

2
+ν

0

√
log T0 ≤ (log T0)

−cQ/2.

Note that λmin(
∑M

l=1 E[žt,▷,lžt,▷,l]) is bounded away from zero. Then, by Markov’s inequality

and the argument used in the proof of Theorem SA-1, λmin(Q̂22) ≥ C5 with probability at least

1− c3T
−1
0 .

For off-diagonal blocks, note that

Q̂12 =
M∑
l=1

{( 1

T0

T0∑
t=1

žt,◁,l(E[žt,▷,l])′
)
+
( 1

T0

T0∑
t=1

žt,◁,l(žt,▷,l − E[žt,▷,l])′
)}
.

The first term, by assumption, is zero. For the second term, by the condition in the theorem,

∥ 1
T0

∑T0
t=1 žt,◁,l(žt,▷,l−E[žt,▷,l])′∥ ≤ C6T

−1/2+νQ
0 with probability over H at least 1−πQ,2. Thus, we

have with probability over H at least 1−c2T
−ψν
0 −c4T

−1
0 −πQ,1−πQ,2, λmin(Q̂) ≥ C7(log T0)

−cQ/2.

Therefore, we can take ϵγ = Cϵ(log T0)
3
2
(1+cQ)T

−1/2
0 for some non-negative finite constant Cϵ.

(ii) Next, we consider Theorem 2. Condition (T2.i) holds by part (1). As in the proof of Theorem

SA-1, condition (T2.ii) can be established using the results given in the previous step, the Gaussian

tail bound, and the basic inequality

λmin(Q̂)∥δ∥2 ≤ δQ̂δ ≤ 2G′δ ≤ 2∥G∥∥δ∥.

Recall that λmin(Q̂) ≥ C7(log T0)
−cQ with probability over H at least 1− c2T

−ψν
0 − c4T

−1
0 −πQ,1−

πQ,2. On the other hand, by a similar argument, with probability over H at least 1 − c2T
−ψν
0 −

c4T
−1
0 − πQ,1 − πQ,2, λmax(Q̂) ≤ (log T0)

cQ . Then, ϖ⋆
δ = C8(log T0)

2cQ+0.5, π⋆δ = c2T
−ψν
0 − c4T

−1
0 −
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πQ,1 − πQ,2, and ϵ
⋆
δ = C9T

−1
0 . Condition (T2.iii) holds by the construction of the thresholding rule

and condition (SA-5.v). Finally, for condition (T2.iv), note that

tr
[
(Σ−1/2Σ̂Σ−1/2 − I)2

]
≤ dλmin(Σ)−2∥Σ̂−Σ∥2.

Since λmin(Σ) ≥ η
1
λmin(Q̂) ≥ η

1
C7(log T0)

−cQ with probability over H at least 1− π⋆δ , the result

follows.

SA-3 Additional Simulation Evidence

The data generating processes have been described in Section 6.1 of the main paper. We consider

models with misspecification error and make use of different methods to estimate the conditional

mean, variance and quantiles of ut given H whenever needed. Specifically, Tables SA-1 and

SA-2 are based on zero-order (“constant”) and second-order (“quadratic”) polynomial regression

methods. The proposed prediction intervals generally perform well with high coverage probability,

though they are very conservative in several cases. Note that in models with ρ = 1, conditional

coverage is more difficult to achieve, since by construction of the evaluation points, we introduce

potentially large “shocks” on the control outcomes and thus on the out-of-sample error eT on

purpose. As expected, the constant regression fails to correct the misspecification error, thus

leading to very poor coverage. Also, compared with the results based on linear regression reported

in the main paper, the prediction intervals based on quadratic regression do not perform well,

probably due to the overfitting issue.

For comparison, we also include two other prediction intervals: “PERM” denotes the prediction

interval based on the cross-sectional permutation method proposed in Abadie et al. (2010), and

“CONF” denotes the prediction interval based on the conformal method developed in Chernozhukov

et al. (2021). As expected, the prediction interval “PERM” provides much lower actual coverage

probability than the nominal level, since it relies on a cross-sectional permutation and does not

apply to the causal inference framework considered in this paper. In contrast, the conformal

prediction interval developed in Chernozhukov et al. (2021) performs better, though its actual

coverage probability is still lower than the target nominal level in general.
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SA-4 Empirical Example: 1990 German Reunification

In this example, we analyze the economic impact on West Germany of 1990 German reunification

(see Abadie, 2021, for more details). The key variable of interest is real per capita GDP of West

Germany. We first consider the raw data of per capita GDP. Figure SA-1(a) shows the per capita

GDP of the synthetic West Germany (dashed blue) and the actual West Germany (solid black).

The synthetic control prediction is able to closely approximate the observed trajectory of per

capita GDP of West Germany prior to the treatment, which can be expected since the data are

non-stationary and may contain (deterministic or stochastic) common trends. After 1990, the

synthetic West Germany is above the actual one, suggesting a negative shock on West Germany

after reunification. Figure SA-1(b) adds a 95% conservative prediction interval that takes into

account the in-sample uncertainty due to the estimated SC weights, and we add the uncertainty

associated with the out-of-sample error eT in Figures SA-1(c)-(e). The constructed PIs for the

counterfactual outcome of West Germany are not always separated from the observed sequence.

To further assess the robustness of the result, we present the sensitivity analysis of the effect in

1993 in Figure SA-1(f). The constructed PIs cover the observed per capita GDP of West Germany,

unless we shrink the estimated (conditional) standard deviation of eT by a factor of 0.25.

Then, we apply our methods to the (log) GDP growth rate time series. The raw data are

transformed by taking the (log) difference operator. Figure SA-2(a) shows that the growth rate

of per capita GDP of the synthetic West Germany is above that of the actual West Germany

after 1990, suggesting a negative economic shock on West Germany after reunification. The PIs

in Figures SA-2(c)-(e) cover the observed sequence for most post-treatment periods, which do not

support statistically significant (negative) effects of reunification on West Germany. Figure SA-2(f)

shows the sensitivity analysis of the effect in 1993. We can see that, though the PI constructed

based on approach 1 in Figure SA-2(c) appears to suggest a significant effect, this result is not very

robust. The corresponding PI covers the observed GDP growth rate of West Germany if we inflate

the estimated (conditional) standard deviation of eT by a factor of 1.5.
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Table SA-1: Simulation, Misspecification Error, Constant Regression Methods

M1 M1-S M2 M3 PERM CONF

CP AL CP AL CP AL CP AL CP AL CP AL

ρ = 0

Cond. 1 0.965 2.211 0.995 2.939 0.987 2.654 0.987 2.654 0.299 0.646 0.864 1.646

2 0.962 2.155 0.994 2.883 0.986 2.598 0.986 2.598 0.270 0.763 0.854 1.642

3 0.961 2.165 0.994 2.893 0.985 2.608 0.985 2.608 0.230 0.891 0.842 1.643

4 0.969 2.260 0.996 2.989 0.988 2.704 0.988 2.704 0.195 1.026 0.830 1.651

5 0.975 2.410 0.997 3.139 0.991 2.853 0.991 2.853 0.162 1.166 0.819 1.665

Uncond. 0.971 2.434 0.995 3.164 0.988 2.881 0.988 2.881 0.411 0.829 0.886 1.687

ρ = 0.5

Cond. 1 0.980 2.493 0.996 3.221 0.993 2.934 0.993 2.934 0.224 0.930 0.854 1.680

2 0.983 2.562 0.997 3.290 0.993 3.003 0.993 3.003 0.270 0.792 0.865 1.691

3 0.985 2.655 0.998 3.383 0.995 3.095 0.995 3.095 0.317 0.678 0.875 1.706

4 0.989 2.768 0.999 3.496 0.995 3.208 0.995 3.208 0.363 0.596 0.887 1.729

5 0.991 2.898 0.999 3.626 0.998 3.338 0.998 3.338 0.408 0.548 0.896 1.756

Uncond. 0.975 2.471 0.996 3.207 0.989 2.920 0.989 2.920 0.467 1.015 0.882 1.695

ρ = 1

Cond. 1 0.990 5.049 1.000 6.474 1.000 6.166 1.000 6.166 1.000 11.253 0.896 3.403

2 1.000 4.842 1.000 6.267 1.000 5.959 1.000 5.959 0.869 11.283 0.985 3.369

3 0.849 4.687 0.989 6.112 0.958 5.804 0.958 5.804 0.004 11.488 0.170 3.345

4 0.041 4.583 0.332 6.008 0.172 5.699 0.172 5.699 0.000 11.934 0.000 3.333

5 0.000 4.545 0.001 5.970 0.000 5.661 0.000 5.661 0.000 12.575 0.000 3.336

Uncond. 0.989 5.632 0.999 7.083 0.995 6.512 0.995 6.512 0.922 17.377 0.895 3.443

Notes. Conditional mean, variance and quantiles of ut are estimated based on constant regression methods. CP =
coverage probability, AL = average length. “M1”: prediction interval for Y1T (0) based on the Gaussian concentration
inequality with 90% nominal coverage probability; “M1-S”: the same as “M1”, but the estimated standard deviation
is doubled in the construction; “M2”: prediction interval for Y1T (0) based on the location-scale model with 90%
nominal coverage probability; “M3”: prediction interval for Y1T (0) based on quantile regression with 90% nominal
coverage probability; “PERM”: prediction interval for Y1T (0) based on the permutation method proposed in Abadie,
Diamond and Hainmueller (2010) with 90% nominal coverage probability; “CONF” prediction interval for Y1T (0)
based on the conformal method developed in Chernozhukov, Wüthrich and Zhu (2021) with 90% nominal coverage
probability.
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Table SA-2: Simulation, Misspecification Error, Quadratic Regression Methods

M1 M1-S M2 M3 PERM CONF

CP AL CP AL CP AL CP AL CP AL CP AL

ρ = 0

Cond. 1 0.929 2.141 0.975 2.866 0.963 2.600 0.951 2.588 0.299 0.646 0.864 1.646

2 0.909 2.083 0.967 2.806 0.947 2.541 0.929 2.495 0.270 0.763 0.854 1.642

3 0.889 2.084 0.956 2.805 0.934 2.542 0.899 2.426 0.230 0.891 0.842 1.643

4 0.881 2.175 0.941 2.899 0.925 2.637 0.863 2.398 0.195 1.026 0.830 1.651

5 0.876 2.342 0.931 3.082 0.914 2.818 0.804 2.384 0.162 1.166 0.819 1.665

Uncond. 0.947 2.350 0.979 3.082 0.971 2.814 0.955 2.728 0.411 0.829 0.886 1.687

ρ = 0.5

Cond. 1 0.926 2.347 0.974 3.054 0.964 2.792 0.942 2.741 0.224 0.930 0.854 1.680

2 0.941 2.402 0.978 3.106 0.968 2.845 0.948 2.789 0.270 0.792 0.865 1.691

3 0.945 2.488 0.980 3.195 0.970 2.934 0.941 2.824 0.317 0.678 0.875 1.706

4 0.947 2.613 0.976 3.331 0.967 3.068 0.918 2.844 0.363 0.596 0.887 1.729

5 0.942 2.788 0.969 3.536 0.961 3.266 0.871 2.845 0.408 0.548 0.896 1.756

Uncond. 0.944 2.356 0.980 3.083 0.968 2.822 0.947 2.760 0.467 1.015 0.882 1.695

ρ = 1

Cond. 1 0.914 3.071 0.946 4.033 0.937 3.685 0.716 2.608 1.000 11.253 0.896 3.403

2 0.950 2.875 0.976 3.791 0.969 3.453 0.900 3.028 0.869 11.283 0.985 3.369

3 0.880 3.284 0.923 4.444 0.907 4.038 0.742 2.891 0.004 11.488 0.170 3.345

4 0.717 6.925 0.768 9.935 0.751 9.157 0.507 2.199 0.000 11.934 0.000 3.333

5 0.581 256.704 0.614 384.612 0.603 392.478 0.374 0.962 0.000 12.575 0.000 3.336

Uncond. 0.962 2.940 0.986 3.713 0.979 3.433 0.959 3.372 0.922 17.377 0.895 3.443

Notes. Conditional mean, variance and quantiles of ut are estimated based on quadratic regression methods. CP =
coverage probability, AL = average length. “M1”: prediction interval for Y1T (0) based on the Gaussian concentration
inequality with 90% nominal coverage probability; “M1-S”: the same as “M1”, but the estimated standard deviation
is doubled in the construction; “M2”: prediction interval for Y1T (0) based on the location-scale model with 90%
nominal coverage probability; “M3”: prediction interval for Y1T (0) based on quantile regression with 90% nominal
coverage probability; “PERM”: prediction interval for Y1T (0) based on the permutation method proposed in Abadie,
Diamond and Hainmueller (2010) with 90% nominal coverage probability; “CONF” prediction interval for Y1T (0)
based on the conformal method developed in Chernozhukov, Wüthrich and Zhu (2021) with 90% nominal coverage
probability.
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Figure SA-1: 1990 German Reunification: GDP Per Capita.
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(a) Synthetic West Germany
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(b) Prediction Interval for x′
Tw0
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(c) Prediction Interval for Y1T (0), approach 1
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(d) Prediction Interval for Y1T (0), approach 2
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(e) Prediction Interval for Y1T (0), approach 3
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(f) Sensitivity Analysis: PIs in 1993

Notes. Panel (a): GDP per capita of West Germany and synthetic West Germany. Panel (b): Prediction interval for synthetic
West Germany with at least 95% coverage probability. Panels (c)-(e): Prediction intervals for the counterfactual of West Ger-
many with at least 90% coverage probability based on three methods described in Section 5, respectively. Panel (f): Prediction
intervals for the counterfactual West Germany based on approach 1, corresponding to c × σH , where c = 0.25, 0.5, 1, 1.5, 2.
The horizontal solid line represents the observed outcome for the treated.

29



Figure SA-2: 1990 German Reunification: GDP Growth Rate.
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(a) Synthetic West Germany
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(b) Prediction Interval for x′
Tw0
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(c) Prediction Interval for Y1T (0), approach 1
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(d) Prediction Interval for Y1T (0), approach 2
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(e) Prediction Interval for Y1T (0), approach 3
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(f) Sensitivity Analysis: PIs in 1993

Notes. Panel (a): GDP growth rate of West Germany and synthetic West Germany. Panel (b): Prediction interval for
synthetic West Germany with at least 95% coverage probability. Panels (c)-(e): Prediction intervals for the counterfactual
of West Germany with at least 90% coverage probability based on three methods described in Section 5, respectively. Panel
(f): Prediction intervals for the counterfactual West Germany based on approach 1, corresponding to c × σH , where c =
0.25, 0.5, 1, 1.5, 2. The horizontal solid line represents the observed outcome for the treated.
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