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S.1 Other Strategies for Uncertainty Quantification

S.1.1 Out-of-Sample Error

In Section 4 we discuss the approach for quantifying the uncertainty of e
[i]
t based on the non-

asymptotic bounds. We briefly describe another two strategies below.

• Location-scale model. Suppose that e
[i]
t = E[e[i]t |H ] + (V[e[i]t |H ])1/2ε

[i]
t with ε

[i]
t statistically

independent of H . The bounds on e
[i]
t can now be set asM2,L = E[e[i]t |H ]+(V[e[i]t |H ])1/2cε(α2/2)

and M2,U = E[e[i]t |H ] + (V[e[i]t |H ])1/2cε(1−α2/2) where cε(α2/2) and cε(1−α2/2) are α2/2 and

(1− α2/2) quantiles of ε
[i]
t , respectively, and α2 is the desired pre-specified level.

• Quantile regression. We can determine the α2/2 and (1− α2/2) conditional quantiles of e
[i]
t |H .

Consequently, another possibility is to employ quantile regression methods to estimate those
quantities using pre-treament data.

S.1.2 Simultaneous Prediction Intervals

Section 4.2 constructs prediction intervals with simultaneous coverage. We briefly describe two
other common approaches below.

• Bonferroni-type correction. There has been a large literature on Bonferroni corrections that
can be used to construct multiple prediction intervals with simultaneous coverage. For example,
consider a simple correction strategy: for each k = 0, · · · , L, use any strategy described in Section

4 to construct a prediction interval for e
[i]
Ti+k that has coverage probability at least 1−(α2/(L+1)).

Then, the simultaneous coverage probability of the L+1 prediction intervals {Ĩk : 0 ≤ k ≤ L} is
at least 1−α2. Some other more sophisticated corrections are also available in the literature (see,
e.g., Ravishanker et al., 1987). For instance, the second-order Bonferroni-type bound implies that

P
[
e
[i]
Ti+k ∈ ĨTi+k for all 0 ≤ k ≤ L

∣∣H ]
≥ 1−

L∑
k=0

pk +
L−1∑
k=0

pk,k+1, where

pk = P(e[i]Ti+k ∈ ĨTi+k|H ), pk,k+1 = P(e[i]Ti+k ∈ ĨTi+k, e
[i]
Ti+k+1 ∈ ĨTi+k+1|H ).

Then, one can construct the prediction intervals Ĩk with corresponding coverage probabilities pk
and pk,k+1 such that 1−

∑L
k=0 pk +

∑L−1
k=0 pk,k+1 ≥ 1−α2. Such bounds are usually sharper, but

their implementation requires the modelling of the dependence of (e
[i]
t , e

[i]
t+1) conditional on H

and is computationally more burdensome.

• Scheffé-type intervals. An alternative approach is to construct Scheffé-type simultaneous pre-
diction intervals, though stronger distributional assumptions need to be made. For instance,

assume that (e
[i]
Ti
, · · · , e[i]Ti+L)

′ jointly follows a conditional Gaussian distribution with mean zero
and variance ΣH . Then,

(e
[i]
Ti
, · · · , e[i]Ti+L)Σ

−1
H (e

[i]
Ti
, · · · , e[i]Ti+L)

′ ∼ χ2
L+1,

where χ2
L+1 is χ

2 distribution with L+1 degrees of freedom. The sequence of prediction intervals

Ĩk =
[
− σH ,kk

√
χ2
L+1(1− α2), σH ,kk

√
χ2
L+1(1− α2)

]
have the simultaneous coverage proba-
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bility at least 1 − α2, where σ2
H ,kk is the kth diagonal element of ΣH and χ2

L+1(1 − α2) is the

(1− α2)-quantile of χ2 distribution with L+ 1 degrees of freedom.

S.2 Proofs

S.2.1 Proof of Theorem 1

Proof. Let

ℓ(δ) = δ′Q̂δ − 2G′δ, and G|H ∼ N(0,Σ)

ℓ⋆(δ) = δ′Q̂δ − 2(G⋆)′δ, and G⋆|Data ∼ N(0, Σ̂)

Accordingly, define

ς̃⋆U = sup
{
p′
τδ : δ ∈ ∆⋆, ∥δ∥ ≤ ϖ⋆

δ , ℓ
⋆(δ) ≤ 0

}
,

ς̃ intU = sup
{
p′
τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆

δ , ℓ
⋆(δ) ≤ 0

}
,

ς̃U = sup
{
p′
τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆

δ , ℓ(δ) ≤ 0
}
.

For any α0 ∈ [0, 1], let c̃⋆U(α0) be the α0-quantile of ς̃⋆U conditional on the data and c̃U(α0) be the
α0-quantile of ς̃U conditional on H . Similarly, define

ς̃⋆L = inf
{
p′
τδ : δ ∈ ∆⋆, ∥δ∥ ≤ ϖ⋆

δ , ℓ
⋆(δ) ≤ 0

}
,

ς̃ intL = inf
{
p′
τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆

δ , ℓ
⋆(δ) ≤ 0

}
,

ς̃L = inf
{
p′
τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆

δ , ℓ(δ) ≤ 0
}
.

Let c̃⋆L(α0) be the α0-quantile of ς̃⋆L conditional on the data and c̃L(α0) be the α0-quantile of ς̃L
conditional on H .

Let P1 = N(0,Σ) and P2 = N(0, Σ̂). By condition (iv), on an event with P-probability at least
1 − π⋆

γ , with P(·|H )-probability at least 1 − ϵ⋆γ,2, the Kullback-Leibler divergence KL(P1,P2) ≤
2(ϵ⋆γ,1)

2, and by Pinsker’s inequality, this implies that for any κ′ ≤ κ,

|P⋆(ς̃ intU ≤ κ)− P⋆(ς̃U ≤ κ)| ≤ ϵ⋆γ,1 and |P⋆(ς̃ intL ≥ κ′)− P⋆(ς̃L ≥ κ′)| ≤ ϵ⋆γ,1.

On the other hand, note that by condition (iii), on an event with P-probability over H at least
1− π⋆

∆, with P(·|H )-probability at least 1− ϵ⋆∆, the event {ς̃⋆U ≤ κ, ς̃⋆L ≥ κ′} implies that

sup
{
p′
τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆

δ , ℓ
⋆(δ) ≤ 0

}
≤ κ+ ∥p′

τ∥∗ sup
a∈∆∩B(0,ϖ⋆

δ )
dist(a,∆⋆)

≤ κ+ ∥p′
τ∥∗ϖ⋆

∆ =: κ+ ε∆

and

inf
{
p′
τδ : δ ∈ ∆, ∥δ∥ ≤ ϖ⋆

δ , ℓ
⋆(δ) ≤ 0

}
≥ κ′ − ∥p′

τ∥∗ sup
a∈∆∩B(0,ϖ⋆

δ )
dist(a,∆⋆)

≥ κ− ε∆.
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Therefore,

P⋆(ς̃⋆U ≤ κ) ≤ P⋆(ς̃ intU ≤ κ+ ε∆) and P⋆(ς̃⋆L ≥ κ′) ≥ P⋆(ς̃ intL ≥ κ′ − ε∆).

Then, on an event with P-probability over H at least 1−π⋆
γ−π⋆

∆, with P(·|H )-probability at least
1− ϵ⋆γ,2 − ϵ⋆∆, we have

1− α1/2 ≤ P⋆
(
ς̃⋆U ≤ c⋆(1− α1/2)

)
≤ P⋆

(
ς̃U ≤ c⋆(1− α1/2) + ε∆

)
+ ϵ⋆γ,1 and

1− α1/2 ≤ P⋆
(
ς̃⋆L ≥ c⋆(α1/2)

)
≤ P⋆

(
ς̃L ≥ c⋆(α1/2)− ε∆

)
+ ϵ⋆γ,1.

Also, by condition (ii), we have with P-probability over H at least 1− π⋆
δ ,

c̃U(1− α1/2− ϵ⋆γ,1) ≥ cU(1− α1/2− ϵ⋆γ,1 − ϵ⋆δ) and c̃L(α1/2 + ϵ⋆γ,1) ≤ cL(α1/2 + ϵ⋆γ,1 + ϵ⋆δ).

Using conditions (i) and (ii), we have with P-probability over H at least 1− πγ − π⋆
γ − π⋆

∆ − π⋆
δ ,

P
(
c⋆L(α1/2)− ε∆ ≤ p′

τ (β̂ − β0) ≤ c⋆U(1− α1/2) + ε∆

∣∣∣H )
≥P

(
c̃L(α1/2 + ϵ⋆γ,1) ≤ p′

τ (β̂ − β0) ≤ c̃U(1− α1/2− ϵ⋆γ,1)
∣∣∣H )

− ϵ⋆γ,2 − ϵ⋆∆

≥P
(
cL(α1/2 + ϵ⋆γ,1 + ϵ⋆δ) ≤ p′

τ (β̂ − β0) ≤ cU(1− α1/2− ϵ⋆γ,1 − ϵ⋆δ)
∣∣∣H )

− ϵ⋆γ,2 − ϵ⋆∆

≥ 1− α1 − 2ϵ⋆γ,1 − 2ϵ⋆δ − ϵγ − ϵ⋆γ,2 − ϵ⋆∆.

Finally, by condition (v), we immediately have P(M2,L ≤ eτ ≤ M2,U) ≥ 1 − α2. Then the proof is
complete.

S.2.2 Verification of Condition (i) in Theorem 1

As explained in the main paper, by convexity of the constraint set W×R and the optimality of β̂,

inf
δ∈Mγ̂−γ

p′
τδ ≤ p′

τ (β̂ − β0) ≤ sup
δ∈Mγ̂−γ

p′
τδ,

where Mγ̂−γ = {δ ∈ ∆ : δ′Q̂δ − 2(γ̂ − γ)′δ}. Thus, condition (i) in Theorem 1 indeed requires
that γ̂ − γ can be approximated by a Gaussian vector G. In general, this can be shown if we

assume (u
[1]
t,1, · · · , u

[1]
t,M , · · · , u[N1]

t,1 , u
[N1]
t,M )′ is independent or weakly dependent conditional on H . In

the following we verify condition (i) by imposing a conditional independence assumption. The
extension that allows for weakly dependent errors can be established using the idea of Theorem A
in Cattaneo et al. (2021).

Lemma S.1. Assume W and R are convex, β̂ in Equation (3.1) and β0 in Equation (4.2) exist,
and H = σ(B,C,pτ ). In addition, for some finite nonnegative constants, the following conditions
hold:

(i) ut = (u
[1]
t,1, · · · , u

[1]
t,M , · · · , u[N1]

t,1 , · · · , u[N1]
t,M ) is independent over t conditional on H ;

(ii) P(
∑T0

t=1 E[∥
∑N1

j=1

∑M
l=1 z̃

[j]
t,l(u

[j]
t,l −E[u[j]t,l |H ])∥3|H ] ≥ ϵγ(84(d

1/4 +16))−1) ≥ 1− πγ where z̃
[j]
t,l

is the ((j − 1)T0M + (l − 1)T0 + t)th column of Σ−1/2Z′.
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Then, with P-probability over H at least 1− πγ,

P
(
cL(α0) ≤ p′

τ (β̂ − β0) ≤ cU(1− α0)|H
)
≥ 1− α0 − ϵγ .

Proof. Define Mξ = {δ ∈ ∆ : δ′Q̂δ−2ξ′δ}. Fix Q̂ and pτ . By Lemma 2 of Cattaneo et al. (2021),
for any κ, Aκ := {ξ ∈ Rd : supδ∈Mξ

p′
τδ ≤ κ} and A′

κ = {ξ ∈ Rd : infδ∈Mξ
p′
τδ ≥ κ} are convex.

By Berry-Esseen Theorem for convex sets Raič (2019),

|P(γ̂ − γ ∈ Aκ|H )− P(G ∈ Aκ|H )| ≤ 42(d1/4 + 16)

T0∑
t=1

E
[∥∥∥ N1∑

j=1

M∑
l=1

z̃
[j]
t,l ũ

[j]
t,l

∥∥∥3|H ]
,

where ũ
[j]
t,l = u

[j]
t,l − E[u[j]t,l |H ]. By condition (ii), with P-probability over H at least 1− πγ ,

|P(γ̂ − γ ∈ Aκ|H )− P(G ∈ Aκ|H )| ≤ ϵγ/2.

Then, for any κ, with P-probability over H at least 1− πγ ,

P(p′
τ (β̂ − β0) ≤ κ|H ) ≥ P(γ̂ − γ ∈ Aκ|H ) ≥ P(G ∈ Aκ|H )− ϵγ/2.

Similarly, we can show for any κ,

P(p′
τ (β̂ − β0) ≥ κ|H ) ≥ P(γ̂ − γ ∈ A′

κ|H ) ≥ P(G ∈ A′
κ|H )− ϵγ/2.

Therefore, with P-probability over H at least 1− πγ ,

P
(
cL(α0) ≤ p′

τ (β̂ − β0) ≤ cU(1− α0)
∣∣∣H )

≥ 1− α0 − ϵγ .

Then the proof is complete.

S.2.3 Proof of Lemma 1

Proof. In this proof, the constant C > 0 is a generic constant that is independent of T0 and may be
different in different uses. Note thatmeq(β0) = 0 andmin(β0) ≤ 0. If the jth inequality constraint

is binding, i.e., min,j(β0) = 0, then min,j(β̂) =
∂

∂β′min,j(β̃)(β̂−β0) for some β̃ between β0 and β̂.

Then, for c := max1≤j≤din supβ∈B(β0,ϖ⋆
δ )
∥ ∂
∂βmin,j(β)∥∗, we have max1≤j≤din |min,j(β̂)| ≤ cϖ⋆

δ with

P(·|H )-probability at least 1− ϵ⋆∆, on an event with P-probability over H at least 1− π⋆
∆. By the

condition imposed on the tuning parameter ϱjs, on an event with P-probability over H at least
1− π⋆

∆, with P(·|H )-probability at least 1− ϵ⋆∆, A coincides with the set of indices for the binding
inequality constraints. Then, for ε ≤ ϖ⋆

δ ,

∆⋆ ∩ B(0, ε) =
{
β − β̂ ∈ B(0, ε) : meq(β) = 0,min,j(β) ≤ min,j(β̂) for j ∈ A

}
.

Without loss of generality, we assume min(β0) = 0 from now on. Otherwise, the non-binding
constraints can be dropped and the proof can proceed the same way described below.
Define Γeq(β) =

∂
∂β′meq(β) and Γin(β) =

∂
∂β′min(β). Let

Γ(β) =
(
Γ′
eq(β),Γ

′
in(β),Γ

′
c(β0)

)′
, Γ0 = Γ(β0), Γ⋆ = Γ(β̂),
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where Γc(β0) is chosen such that Γ(β0) is non-degenerate. By conditions (i) and (ii) imposed in
the lemma, ∥Γ0 − Γ⋆∥ ≤ C∥β̂ − β0∥ with P(·|H )-probability at least 1 − ϵ⋆∆, on an event with
P-probability at least 1− π⋆

∆.
Let

m+(·) =
(
m′

eq(·), m′
in(·), (· − β0)

′ × Γc(β0)
′
)′
.

Then, m+(β0) = 0. For each β in the neighborhood around β0 such that β − β0 ∈ ∆ ∩ B(0, ε),
define

λ0 = (Γ0)−1
(
m+(β)−m+(β0)

)
.

Thus, Γ0
eqλ

0 = 0, Γ0
inλ

0 ≤ 0. Note that by Taylor’s expansion,

∥λ0 − (Γ0)−1Γ0(β − β0)∥ ≤ C∥β − β0∥2,

implying that ∥λ0− (β−β0)∥ ≤ C(ϖ⋆
δ )

2 with P(·|H )-probability at least 1− ϵ⋆∆, on an event with
P-probability at least 1− π⋆

∆.

Next, define m̃(·) = m+(β̂ + ·)−m+(β̂) and β̃ = ϕ⋆ + β̂ for ϕ⋆ defined below:

ϕ⋆ := m̃−1
(
Γ⋆(λ0 − (Γ⋆)−1(Γ⋆ − Γ0)λ0)

)
.

By Taylor’s expansion,

ϕ⋆ = m̃−1(0) +
[ ∂

∂ϕ′ m̃(0)
]−1

Γ⋆
(
λ0 − (Γ⋆)−1(Γ⋆ − Γ0)λ0

)
+Re

= λ0 + (Γ⋆)−1(Γ⋆ − Γ0)λ0 +Re,

where ∥(Γ⋆)−1(Γ⋆−Γ0)λ0+Re∥ ≤ C∥λ0∥2 with P(·|H )-probability at least 1−ϵ⋆∆, on an event with

P-probability over H at least 1−π⋆
∆. That is, we actually find β̃ such that ∥(β̃−β̂)−λ0∥ ≤ C(ϖ⋆

δ )
2.

Note that

m+(β̂ + ϕ⋆)−m+(β̂) = m̃(ϕ⋆) = m̃
(
m̃−1

(
Γ⋆(λ0 − (Γ⋆)−1(Γ⋆ − Γ0)λ0)

))
.

Thus, meq(β̃) = 0 and min(β̃) ≤ min(β̂).
In the above, we make use of the fact that Γ⋆ is non-degenerate, i.e., its smallest eigenvalue is

bounded away from zero. Note that by assumptions on the constraints, it is feasible to construct
Γc such that Γ0 is non-degenerate (with high probability over H ). Then, by Weyl’s inequality,

smin(Γ
⋆(Γ⋆)′) ≥ smin(Γ

0(Γ0)′)− C∥β̂ − β0∥,

implying smin(Γ
⋆) ≥ smin(Γ

0) − C∥β̂ − β0∥ > 0 with P(·|H )-probability at least 1 − ϵ⋆∆, on an
event with P-probability at least 1− π⋆

∆, where smin(·) here denotes the smallest eigenvalue of the
symmetric matrix inside. Then, the proof is complete.

S.3 Second Order Cone Programming

For the sake of completeness, at the beginning of this section we define again the three types of
convex optimization problems presented in the main text in Section 5.1. Second, we illustrate the
link between these three families of convex problems. Third, we note that the optimization problems

7



underlying the prediction/estimation and uncertainty quantification problems for SC presented in
Section 3 are QCQPs and QCLPs, respectively, and show how to represent them as SOCPs. Finally,
we show how to write the Lasso-type constraint in conic form.

S.3.1 Families of convex optimization problems

QCQPs and QCLPs. A quadratically constrained quadratic program is an optimization problem
of with the following form

min
x

x′P0x+ q′
0x+ w (S.3.1)

subject to x′Pjx+ q′
jx+ rj ≤ 0, j = 1, . . . ,m (Quadratic inequality constraint)

Fx = g, (Linear equality constraint)

where P0,P1, . . . ,Pm ∈ Mn×n(R), q0,q1, . . . ,qm ∈ Rn, x ∈ Rn, F ∈ Mm×n(R), g ∈ Rm, and
r0, r1, . . . , rm, w ∈ R. If all the matrices P0,P1, . . . ,Pm are positive semi-definite the QCQP is
convex. Moreover, if P0 = 0 the QCQP becomes a QCLP. For this reason, in what follows we will
restrict our attention to QCQPs as they naturally embed QCLPs.

SOCPs. To define a SOCP, it is necessary to first give the definition of a second-order cone and
then introduce the notion of associated generalized inequality.

Second-order cone definition. A set C is called a cone if for every x ∈ C and α ≥ 0 we have
αx ∈ C. A set C is a convex cone if it is convex and a cone, i.e. if ∀x1,x2 ∈ C,and ∀α1, α2 ≥ 0, we
have

α1x1 + αx2 ∈ C.

Now, consider any norm || · || defined on the Euclidean space Rn. The norm cone associated with
the norm || · || is defined to be the set

C = {(x, t) ∈ Rn+1 : ||x|| ≤ t}

and it is a convex cone by the standard properties of the norms. A second-order cone is the
associated norm cone for the Euclidean norm and it is typically defined as

C =
{
(x, t) ∈ Rn+1 : ∥x∥2 ≤ t

}
=

{[
x
t

]
:
[
x
t

]′ [ I 0
0 −1

] [
x
t

]
≤ 0, t ≥ 0

}
Generalized inequality. A cone C is solid if it has non-empty interior and it is pointed if

x ∈ C,−x ∈ C implies that x = 0. We say that a cone C is proper if is it convex, closed, solid, and
pointed. Proper cones in the Euclidean space Rn are useful because they induce a partial ordering
which enjoys almost all the properties of the basic one in R. Therefore, given a cone C ⊆ Rn, we
can define the generalized inequality ⪯C for any two vectors x,y ∈ Rn

x ⪯C y ⇐⇒ y − x ∈ C.

From this defition we can see that quadratic constraints such as ||x||2 ≤ h can be re-written as
second-order cone constraints of the form x ⪯C h for some second-order cone C. Note that if C = Rm

+

then if m = 1, ⪯C is the standard inequality ≤ in R, whereas if m > 1, ⪯C is the component-wise
inequality in Rm.

Second-order cone program. Let K be a cone such that K = Rm
+ × K1 × K2 × · · · × KL where

8



Kl := {(k0,k1) ∈ R×Rl : ||k1||2 ≤ k0}, l = 1, . . . , L. Let⪯K be the generalized inequality associated
with the cone K. An optimization problem is called second-order cone program if it has the following
form

min
x

c′x, (S.3.2)

subject to Gx ⪯K h, (Second-order cone constraint)

Ax = b. (Linear equality constraint)

S.3.2 Link between QCQP and SOCPs.

Any QCQP can be converted to a SOCP (Boyd and Vandenberghe, 2004). In other words, we can
always rewrite an optimization problem such as (S.3.1) in the form of (S.3.2). First, we present
the general result and then we explain all the necessary steps to reformulate QCQPs as SOCPs.
Without loss of generality, assume that w = 0 in (S.3.1) and, to ease notation, let m = 1 so that
there is only a single quadratic inequality constraint. Moreover, given any positive semi-definite
matrix P, let P1/2 be the square root of P, that is the unique symmetric positive semi-definite
matrix R such that RR = R′R = P. Then for any QCQP the following two formulations are
equivalent

QCQP

min
x

x′P0x+ q′
0x

subject to Fx = g,

x′P1x+ q′
1x+ r1 ≤ 0.

SOCP

min
x,v,s

v + q′
0x

subject to Fx = g,

t+ q′
1x+ r1 ≤ 0,

P
1/2
0 x ⪯K2+n v,

P
1/2
1 x ⪯K2+n s.

We can see that the logic beneath the conversion of a QCQP into a SOCP is to “linearize” all the
non-linear terms appearing either in the objective function or in the inequality constraints. The
“linearization” step does come at a cost, as it requires the introduction of a slack variable every
time we rely on it. Indeed, above we linearized the objective function and the quadratic inequality
constraint by introducing two auxiliary slack variables.
More formally, let x′Px be a symmetric positive semi-definite quadratic form and consider the

constraint x′Px ≤ y. Then

(i) Since P is symmetric positive semi-definite the epigraph x′Px ≤ y is a convex set and P1/2

is well-defined.

(ii) Write the inequality constraint as a constraint involving the Euclidean norm ∥ · ∥2

y ≥ x′Px = x′P1/2P1/2x = ||P1/2x||22.

(iii) Note that

||P1/2x||22 ≤ y ⇐⇒
∥∥∥∥[ 1− y

2P1/2x

]∥∥∥∥
2

≤ 1 + y, (S.3.3)
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which can be verified by squaring the two sides of the last inequality and expand the norm.

(iv) More is true, as the right-most inequality in (S.3.3) defines the following second-order cone
for given P1/2

C =

{(
1− y, 2P1/2x, 1 + y

)
:

∥∥∥∥[ 1− y
2P1/2x

]∥∥∥∥
2

≤ 1 + y

}
,

which in turn induces the generalized inequality P1/2x ⪯C y.

SC problem with lasso-type W as a SOCP. We show how to write the QCQP as a SOCP
when W has a lasso-type constraint. In this case the SC weight construction (3.1) has the form:

min
w,r

(A−Bw −Cr)′V(A−Bw −Cr) (S.3.4)

subject to ||w||1 ≤ Q1, (L1 inequality constraint)

We can write the optimization problem in (S.3.4) as a SOCP of the following form

min
w,r,z

v

subject to

[
1− v

2V1/2(A−Bw −Cr)

]
⪯C1 1 + v, (cone in R2+T0·M ·N1)

1′z ⪯C2 Q1, (cone in R)
−w ⪯C3 z, (cone in RJ ·N1)

w ⪯C4 z, (cone in RJ ·N1)

where K = C1 × C2 × C3 × C4 = K2+T0·M ·N1 × R+×RJ ·N1
+ × RJ ·N1

+ is the conic constraint for this
program
For uncertainty quantification, we need to solve the optimization problem underlying (4.4). Here

we discuss the lower bound only for brevity. Recalling that β = (w′, r′)′, we have

inf
β=(w′,r′)′

p′
τ (β − β̂) (S.3.5)

subject to ||w||1 ≤ Q1, (L1 inequality constraint)

(β − β̂)′Q̂(β − β̂)− 2(G⋆)′(β − β̂) ≤ 0,

where the scalar ϱ1 and the vector ϱ2 are regularization parameters used to relax ∆ (to ∆⋆ as
discussed in Section 4). The following sections discuss how to choose these tuning parameters in a
principled way.
We can cast the SC optimization problem in (S.3.5) in conic form as follows:

min
w,r,s,t

p′
τβ

subject to t+ a′β + f ⪯C1 0, (cone in R)
1′z ⪯C2 Q1, (cone in R)
−w ⪯C3 z, (cone in RJ ·N1)

w ⪯C4 z. (cone in RJ ·N1)
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[
1− t

2Q1/2β

]
⪯C5 1 + t, (cone in R2+(J+KM)·N1)

where K = C1 × C2 × C3 × C4 × C5 = R+×R+×RJ ·N1
+ × RJ ·N1

+ × KJ ·N1+1 × K2+(J+KM)·N1
is the

conic constraint for this program, a = −2(′Qβ̂ +G⋆)′, and f = β̂′Qβ̂ + 2G⋆β̂.

S.4 Data Preparation and Software Implementation

In this section, we first describe the variables in the Billmeier and Nannicini (2013) (BN, henceforth)
dataset and explain all the changes and additions we made. Then, we illustrate how to use the
companion R package scpi to prepare the data for the analysis and we briefly explain how to
replicate the results.

S.4.1 Data Description

The original BN dataset contains data on some economic and political variables for 180 countries,
over a period of time spanning from 1960 to 2005.1 In detail, the variables available in the dataset
are:

• real GDP per capita in 2002 US dollars

• enrollment rate in secondary schooling

• population growth

• yearly inflation rate

• the investment ratio (the investment of a country as a percentage of GDP)

• an indicator that captures whether the country is a democracy (1) or not (0)

• an indicator that captures whether the economy of the country is considered closed (0) or
not (1) as developed in Sachs, Warner, Åslund and Fischer (1995) (henceforth, Sachs-Warner
indicator). In particular, the indicator takes value 0 if any of the following condition is
verified:

i) the average tariff is above 40%

ii) non-tariff barriers are imposed on a volume of imports larger than 40%

iii) the country has a socialist economic system

iv) the exchange rate black market premium is above 20%

v) state monopolies control most of the country exports

Despite having six candidate variables to match on, we end up matching on two variables because of
missing data. Specifically, in the case of Europe - analyzed in the main article - at least one of these
variables is completely missing before 1990 for Albania, Bulgaria, Romania, Slovak Republic, and
Slovenia. Moreover, the original schooling variable has missing data for our countries of interest.

1We downloaded the dataset from the Harvard Dataverse at https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/28699.
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Thus we replace it with the percentage of complete secondary schooling attained in population
from the Barro-Lee dataset on educational attainment.2

A second difference of our final dataset from the original one used in BN is the final pool of
countries - treated and donors - on which we conduct the analysis. In particular, we adopt the
following data cleaning criteria to select the countries to be included in our final dataset:

1. At least 35 data entries for real GDP per capita from 1963 to 2000. This excludes the following
economies (number of periods when real GDP per capita is observed in parenthesis): Armenia
(8), Azerbaijan (8), Belarus (8), Dominican Republic (21), Ecuador (31), El Salvador (30),
Estonia (8), Georgia (8), Kazakhstan (8), Kyrgyzstan (8), Latvia (8), Lithuania (8), Moldova
(8), Russia (8), Tajikistan (8), Turkmenistan (8), Ukraine (8), and Uzbekistan (8).

2. At least 15 pre-treatment periods, that is, the country is observed for at least 15 periods
before it embarks on the liberalization program in the Sachs-Warner. This excludes the
following economies (year in which the country’s economy was first declared liberalized in
parenthesis): Australia (1964), Austria (≤ 1963), Barbados (1966), Belgium (≤ 1963), Bolivia
(1964), Canada (≤ 1963), Chile (1976), Cyprus (1964), Denmark (1966), Finland (≤ 1963),
France (≤ 1963), Germany (≤ 1963), Greece (≤ 1963), Hong Kong (≤ 1963), Indonesia (1970),
Ireland (1966), Italy (≤ 1963), Jamaica (≤ 1963), Japan (1964), Jordan (1965), Kenya (1965),
Luxembourg (≤ 1963), Malaysia (≤ 1963), Mauritius (1968), Morocco (≤ 1963), Netherlands
(≤ 1963), Norway (≤ 1963), Peru (≤ 1963), Portugal (≤ 1963), Singapore (1965), South
Korea (1968), Spain (≤ 1963), Sri Lanka (1977), Sweden (≤ 1963), Switzerland (≤ 1963),
Syria (≤ 1963), Taiwan (≤ 1963), Thailand (≤ 1963), United Kingdom (≤ 1963), United
States (≤ 1963), Yemen (1965).

3. At least one entry for the percentage of complete secondary schooling attained in popula-
tion. This excludes the following economies: Angola, Burkina Faso, Chad, Ethiopia, Guinea,
Guinea-Bissau, Madagascar, Nigeria, and North Macedonia.

4. The liberalization is an absorbing state, that is, whenever the country embarks on a liberal-
ization program, it remains so for the whole remaining time this country is observed. This
excludes Venezuela.

Table S.1 shows the final set of countries we select, together with their treatment date.

2source: http://www.barrolee.com/
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Table S.1: List of all countries included in our analysis

Africa Asia

Algeria ∞ Madagascar 1996 Bangladesh 1996 Nepal 1991
Angola ∞ Malawi ∞ China ∞ Pakistan ∞
Benin 1990 Mali 1988 India ∞ Philippines 1988
Botswana 1979 Mauritania 1995 Iran ∞ Turkey 1989
Burkina Faso 1998 Mozambique 1995 Israel 1985
Burundi 1999 Niger 1994
Cameroon 1993 Nigeria ∞
Chad ∞ Rwanda ∞
Congo ∞ Senegal ∞ Europe

Egypt 1995 Sierra Leone ∞ Albania 1992 Malta ∞
Ethiopia 1996 South Africa 1991 Bulgaria 1991 North Macedonia 1994
Gabon ∞ Tanzania 1995 Croatia ∞ Poland 1990
Gambia 1985 Togo ∞ Czech Republic 1991 Romania 1992
Ghana 1985 Tunisia 1989 Hungary 1990 Slovak Republic 1991
Guinea 1986 Uganda 1988 Iceland ∞ Slovenia 1991
Guinea-Bissau 1987 Zambia 1993
Ivory Coast 1994 Zimbabwe ∞
Lesotho ∞

North America South America

Costa Rica 1986 Mexico 1986 Argentina 1991 Guyana 1988
Guatemala 1988 Nicaragua 1991 Brazil 1991 Paraguay 1989
Haiti ∞ Panama 1996 Colombia 1986 Uruguay 1990
Honduras 1991

Notes: ∞ denotes that a country has never experienced liberalization during the time span of observation.

To be precise, not all treated units in Table S.1 are analyzed in our work; we only study our
target causal predictands for those units having at least 10 post-treatment periods. In other words,
units treated after 1992 are not analyzed. Despite this fact, we still include units treated after 1992
because the staggered nature of this design, together with the fact that we focus on effects up to 10
years after liberalization events, make it possible to use such economies as donor units. To better
illustrate this concept, take the case of Botswana that gets the treatment in 1979 and for which we
study the effects of such treatment up to 1988 (see Figure S.1c). This allows us to use all countries
treated from 1989 (included) onwards as donor units. In the same spirit, all countries treated after
1994 can be used as donor units for Israel (see Figure S.4c).

S.4.2 Code

In what follows we briefly explain how to replicate the results presented in the main paper and
in this supplemental appendix using our R software package scpi. In particular, we focus on the
two functions scdataMulti() and scplotMulti(), which have to be considered as the multiple
treated units counterpart of scdata() and scplot() that we introduce and thoroughly describe
in Cattaneo, Feng, Palomba and Titiunik (2022).
The next snippet shows how to prepare the data to predict the individual treatment effect

τit and the average post-treatment effect τi·. To accomplish this task, we leverage the function
scdataMulti(), which receives as an input an object of class DataFrame and outputs the matrices
A,B,C, and P together with other useful objects that are descried in detail in the help files.

# Load packages and set seed
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library(scpi)

library(haven)

set.seed (8894)

# Load dataset

data <- haven::read_dta(paste0(path.data , "final_data.dta"))

data <- subset(data , restricted2 == 1)

data$lgdp <- log(data$rgdppp)

# Features to be matched

features <- list(c("lgdp","lsc"))

# Covariates for adjustment

covs.adj <- list("lgdp" = c("constant", "trend"),

"lsc" = c("constant", "trend"))

# Select treated units to be analyzed

units <- unique(subset(data , continent == "Europe" & treated == 1 & trDate <= 1992)$
countryname)

units <- units[!(units %in% c("Czech Republic", "Poland"))]

# Set number of post -estimation periods

post.est <- 10

# Prepare data for Individual treatment effect

df <- scdataMulti(data , id.var = "countryname", outcome.var = "lgdp",

treatment.var = "liberalization", time.var = "year",

constant = TRUE , cointegrated.data = TRUE , post.est = post.est ,

units.est = units , features = features , cov.adj = covs.adj , anticipation = 1)

# Prepare data for Average post -treatment effect

df.unit <- scdataMulti(data , id.var = "countryname", outcome.var = "lgdp", effect = "unit",

treatment.var = "liberalization", time.var = "year", constant = TRUE ,

cointegrated.data = TRUE , post.est = post.est , units.est = units ,

features = features , cov.adj = covs.adj , anticipation = 1)

# Prepare data for Average treatment effect on the treated

df.time <- scdataMulti(data , id.var = "countryname", outcome.var = "lgdp", effect = "time",

treatment.var = "liberalization", time.var = "year",

constant = TRUE , cointegrated.data = TRUE , post.est = post.est ,

units.est = units [[cont]], features = features , cov.adj = covs.adj ,

anticipation = 1)

First of all, it is important to notice the presence of the option effect = "unit" when it comes to
predict the average post-treatment effect and of the option effect = "time" when the predictand
of interest is the average treatment effect on the treated. Second, the most important input variable
for scdataMulti() is the treatment variable treatment.var. In our case, treatment.var is the
Sachs-Warner indicator which de facto has 1 as the absorbing state (once a country is described as
open in our data, it remains so for all the period of analysis). Third, scdataMulti() has two options
that allow users to choose which treated units to study and how many post-treatment periods should
be considered in the analysis. These options are units.est and post.est, respectively. Finally,
all the other options—cointegrated.data, constant, anticipation, features, cov.adj, id.var
and time.var—are identical to those of scdata().
Once the data matrices A,B,C, and P have been prepared, uncertainty quantification proceeds

in the standard way. Specifically, the user has to call the function scpi() with the appropriate
input object.

res <- scpi(df, sims = sims , cores = cores , w.constr = list("name" = "L1 -L2"),

u.order = 1, u.lags = 1)

res.unit <- scpi(df.unit , sims = sims , cores = cores , w.constr = list("name" = "L1-L2"),

u.order = 1, u.lags = 1)
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res.time <- scpi(df.time , sims = sims , cores = cores , w.constr = list("name" = "L1-L2"),

u.order = 1, u.lags = 1)

Finally, it is possible to visualize the results through the function scplotMulti(). This function
allows the user to either plot the synthetic control and the actual time series (type = "series") or
directly the treatment effect time series (type = "treatment"). This latter is simply the difference
between the actual time series and the synthetic control one. In addition, simultaneous prediction
intervals are readily available through the option joint = TRUE.

scplotMulti(res[, type = "series", joint = TRUE , ncols = 2)

scplotMulti(res.unit[, type = "series", joint = TRUE , ncols = 2)

scplotMulti(res.time[, type = "series", joint = TRUE , ncols = 2)

scplotMulti(res[, type = "treatment", joint = TRUE , ncols = 2)

scplotMulti(res.unit[, type = "treatment", joint = TRUE , ncols = 2)

scplotMulti(res.time[, type = "treatment", joint = TRUE , ncols = 2)

The next and final snippet showcases how to prepare the data for the third causal quantity
analyzed in this paper: the average treatment effect on the treated at s0.

# Load packages and set seed

library(scpi)

library(haven)

set.seed (8894)

data <- haven::read_dta(paste0(path.data , "final_data.dta"))

data <- subset(data , restricted2 == 1)

data$lgdp <- log(data$rgdppp)
post.est <- 10

# One Feature

eu.tr.91 <- unique(subset(data , trDate %in% c(1990 ,1991 ,1992) & continent == "Europe")$
countryname)

data.co <- subset(data , !(countryname %in% eu.tr.91))

data.tr <- subset(data , countryname %in% eu.tr.91)

data.tr.agg <- aggregate(data.tr[c("lgdp", "liberalization")],

by=list(data.tr$year), FUN=mean , na.rm = TRUE)

names(data.tr.agg) <- c("year","lgdp","liberalization")

data.tr.agg$countryname <- "Average Unit"

data.tr.agg$liberalization <- 1*(data.tr.agg$liberalization > 0)

data.agg <- rbind(data.tr.agg , data.co[names(data.tr.agg)])

features <- list(c("lgdp"))

covs.adj <- list("lgdp" = c("constant", "trend"))

df.agg <- scdataMulti(data.agg , id.var = "countryname", outcome.var = "lgdp",

treatment.var = "liberalization", time.var = "year",

constant = FALSE , cointegrated.data = T, post.est = 10,

units.est = "Average Unit", features=features , cov.adj=covs.adj)

res.avg.l1l2 <- scpi(df.agg , sims = sims , cores = 1, w.constr = list("name" = "L1 -L2"),

u.order = 1, u.lags = 1)

Data preparation follows exactly the lines of Example 3.3, and thus the selected treated units
are aggregated into a single one—termed “ave”—whose potential outcomes are simply

Y ave
t (s) :=

1

Ns0

∑
i:Ti=s0

Yit(s), t = 1, · · · , T.
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The predictand of interest can be computed using “ave” as the only treated unit and control units
from pre-treatment periods. Then, everything else proceeds as in the individual treatment effect
case.

S.5 Results with Simplex Constraint

In this Section we report the results for Africa, Asia, Europe, North America, and South America
using the simplex constraint in place of the L1-L2 constraint used in the main analysis, that is,

W =
N1

ą

i=1

{
w[i] ∈ RJ

+ : ||w[i]||1 = 1
}
.
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S.5.1 Africa

Figure S.1: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.2: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.3: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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S.5.2 Asia

Figure S.4: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.5: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.6: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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S.5.3 Europe

Figure S.7: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.8: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.9: Average Treatment Effect on the Treated in 1990 and 1991.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 500 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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Figure S.10: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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S.5.4 North America

Figure S.11: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.12: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.13: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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S.5.5 South America

Figure S.14: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.15: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.16: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.

S.6 Results with L1-L2, Other Continents

In this Section we report the results for Africa, Asia, North America, and South America using the
L1-L2 constraint as in the main analysis for Europe, that is,

W =
N1

ą

i=1

{
w[i] ∈ RJ : ||w[i]||1 = 1, ||w[i]||2 ≤ Q

[i]
2

}
.
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S.6.1 Africa

Figure S.17: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.18: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.19: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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S.6.2 Asia

Figure S.20: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.21: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.22: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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S.6.3 North America

Figure S.23: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.24: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.25: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.

41



S.6.4 South America

Figure S.26: Individual Treatment Effects τ̂it.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂it

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.
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Figure S.27: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals.
In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified using sub-
Gaussian bounds.
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Figure S.28: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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S.7 Average treatment effect on countries liberalized in 1991

In this section we present alternative predictions of the average treatment effect on those European
countries that underwent a liberalization program in 1991. First, we replicate the main analysis
presented in Section 6 using a simplex-type constraint, and then we conduct the same exercise
using two features: the logarithm of GDP per capita and the percentage of complete secondary
schooling attained in population.

Figure S.29: Average Treatment Effect on the Treated in 1991: Simplex constraint, M = 1.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·t,1991

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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Figure S.30: Average Treatment Effect on the Treated in 1991: L1-L2 constraint, M = 1.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·t,1991

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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Figure S.31: Average Treatment Effect on the Treated in 1991: Simplex constraint, M = 2.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·t,1991

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.
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S.8 Excluded Countries

In this section we present point predictions of individual treatment effects for all those treated
units that have been excluded from the main analysis. Three different reasons lead us to remove a
country from our study: (i) missing additional features; (ii) poor pre-treatment fit; (iii) treatment
date between 1993 and 2000.

Case I: Missing Additional Features. In the case of North Macedonia, we only have data on real
GDP per capita, as we do not observe the percentage of complete secondary schooling attained in
population. Figure S.32 shows the estimated synthetic control for North Macedonia when matching
exclusively on real income.

Figure S.32: Individual Treatment Effect τ̂it: North Macedonia.

(a) Yit(Ti) and Ŷit(∞), L1-L2 (b) Yit(Ti) and Ŷit(∞), simplex

(c) ŵi, L1-L2 (d) ŵi, simplex

Case II: Poor pre-treatment fit. We excluded Slovenia from the main analysis that uses the L1-L2
constraint. This decision is motivated by an evident discrepancy between the realized series for real
income and the synthetic control (Figure S.33a). When we use a simplex-type constraint (Figure
S.33b), the number of excluded countries rises to 4— Czech Republic, Poland, Slovak Republic, and
Slovenia. This happens because the synthetic control obtained under the simplex constraint is a
convex combinations of unexposed units, i.e., each weight is forced to be within the closed interval
[0, 1] (Figure S.33d). The L1-L2 constraint relies on the same constraint but on top of that adds a
ridge-type constraint. In this case, it is evident that this leads to a better pre-treatment matching
for at least three countries (Czech Republic, Poland, and Slovak Republic).

48



Figure S.33: Individual Treatment Effect τ̂it: Excluded European countries.

(a) Yit(Ti) and Ŷit(∞), L1-L2 (b) Yit(Ti) and Ŷit(∞), simplex

(c) ŵi, L1-L2 (d) ŵi, simplex

Case III: treatment date after 1992. Since our main analysis requires at least 10 post-treatment
periods, our dataset ranges until the year 2000, and we consider one year of possible anticipation
effects, units treated in 1993 or afterwards are not included. Indeed, such units are observed for
less than 10 years in the treated status. Figure S.34 reports the point predictions for all these
countries.
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Figure S.34: Individual Treatment Effect τ̂it: Treated after 1992.

(a) Yit(Ti) and Ŷit(∞), L1-L2 (b) Yit(Ti) and Ŷit(∞), simplex

(c) ŵi, L1-L2 (d) ŵi, simplex
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