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1 Implied Weights in Optimal WIMSE Approach

Recall from the main paper that the optimal choices of number of bins based on a WIMSE can be

written as

JES-ω,−,n = dω−JES-µ,−,ne and JES-ω,+,n = dω+JES-µ,+,ne,

where JES-µ,−,n and JES-µ,+,n denote the IMSE-optimal choices and ω− = (ωB,−/ωV ,−)1/3 and

ω+ = (ωB,+/ωV ,+)1/3. As discussed in the paper, this result may be used to justify ad-hoc rescalings

chosen by the researchers when using the IMSE-optimal choices as a starting point. In particular,

given a choice of rescaling factors ω− and ω+, we have:

(ωV ,−, ωB,−) =

(
1

1 + ω3
−
,

ω3
−

1 + ω3
−

)
and (ωV ,+, ωB,+) =

(
1

1 + ω3
+

,
ω3

+

1 + ω3
+

)
,

which are the resulting weights entering the WIMSE objective function that would be compatible

with such choices of rescale constants for the IMSE-optimal number of bins.

To gain some intuition on the relative weights emerging from manual rescaling of the IMSE-

optimal choice, we present the implied weights in the optimal WIMSE approach for different,

common choices of rescaling constants ω:

ω ωV ωB

0.1 0.999 0.001
0.2 0.992 0.008
0.5 0.889 0.111
1 0.500 0.500
2 0.111 0.889
5 0.008 0.992
10 0.001 0.999

As expected, the larger ω the smaller the weight on variance (ωV ) and the larger the weight on

bias (ωB) in the WIMSE objective function. Our software implementations in R and Stata compute

this weights explicitly as part of the standard output; see Calonico, Cattaneo and Titiunik (2014a,

2015) for further details.
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2 Proofs of Main Theorems

We state and prove results only for the treatment group (subindex “+”) because for the control

group the results and proofs are analogous. Here we only provide short, self-contained proofs of the

main results presented in the paper. To this end, we first state three preliminary technical lemmas.

We also offer short proofs of these lemmas, and provide references to the underlying results not

reproduced here to conserve space.

Recall that the lower and upper end points of P+,j are denoted, respectively, by p+,j−1 and

p+,j for j = 1, 2, · · · , J+,n, which are nonrandom under ES partitioning and random under QS

partitioning. Let p̄+,j = (p+,j + p+,j−1)/2 be the middle point of bin P+,j . Throughout the

supplemental appendix C denotes an arbitrary positive, bounded constant taking different values

in different places.

2.1 Lemma SA1

This lemma holds for any nonrandom partition P+,n satisfying

C1

J+,n
≤ min

1≤j≤J+,n
|p+,j − p+,j−1| ≤ max

1≤j≤J+,n
|p+,j − p+,j−1| ≤

C2

J+,n
,

for fixed positive constants C1 and C2. In particular, it holds for PES,+,n.

Note also that Lemma SA1(i) shows that P(N+,j > 0) → 1 uniformly in j, which guarantees

that the estimators for the ES partitioning scheme are well-behaved in large samples.

Lemma SA1. Let Assumption 1 hold. For PES,+,n, if

J+,n log(J+,n)

n
→ 0 and J+,n →∞,
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then the following results hold.

(i) max
1≤j≤J+,n

|1(N+,j > 0)− 1| = oP(1).

(ii) max
1≤j≤J+,n

|N+,j/n− P[Xi ∈ P+,j ]| = oP(J−1
+,n).

(iii) max
1≤j≤J+,n

∣∣∣∣∣ 1n
n∑
i=1

1P+,j (Xi)
Xi − p̄+,j

p+,j − p+,j−1
− E

[
1P+,j (Xi)

Xi − p̄+,j

p+,j − p+,j−1

]∣∣∣∣∣ = oP(J−1
+,n).

(iv) max
1≤j≤J+,n

∣∣∣∣E [1P+,j (Xi)
Xi − p̄+,j

p+,j − p+,j−1

]∣∣∣∣ = o(J−1
+,n).

Proof of Lemma SA1. The proof of this lemma is very similar to the results given in the

supplemental appendix of Cattaneo and Farrell (2013). Part (i) follows by properties of the Binomial

distribution and simple bounding arguments, under the assumptions imposed. For part (ii), note

that E[1(Xi ∈ P+,j)] = P[Xi ∈ P+,j ] = O(J−1
+,n) and C1/J+,n ≤ V[1(Xi ∈ P+,j)] ≤ C2/J+,n,

uniformly in j = 1, 2, · · · , J+,n. For any ε > 0, and using Bernstein inequality, we have

P
[
J+,n max

1≤j≤J+,n

∣∣∣∣Nj

n
− P[Xi ∈ P+,j ]

∣∣∣∣ > ε

]
≤ J+,n max

1≤j≤J+,n
P

[∣∣∣∣∣
n∑
i=1

(1(Xi ∈ P+,j)− P[Xi ∈ P+,j ])

∣∣∣∣∣ > nε/J+,n

]

≤ J+,n max
1≤j≤J+,n

2 exp

{
−

n2ε2/J2
+,n

2
∑n

i=1 V[1(Xi ∈ P+,j)] + 2nε

}

≤ C exp

{
− Cn

J+,n + J2
+,nε

+ log(J+,n)

}
≤ C exp

{
− Cn

J+,n
+ log(J+,n)

}
→ 0,

provided that J+,n log(J+,n)/n→∞. Part (iii) follows by similar arguments.

Finally, to verify part (iv), using change of variables we obtain

max
1≤j≤J+,n

∣∣∣∣E [1P+,j (Xi)
Xi − p̄+,j

p+,j − p+,j−1

]∣∣∣∣
= max

1≤j≤Jn

∣∣∣∣∫ xu

x̄
1P+,j (x)

x− p̄+,j

p+,j − p+,j−1
f(x)dx

∣∣∣∣
= max

1≤j≤J+,n
(p+,j − p+,j−1)

∣∣∣∣∫ 1

−1
uf(u(p+,j − p+,j−1) + p̄+,j)du

∣∣∣∣
= max

1≤j≤J+,n

xu − x̄
J+,n

∣∣∣∣∫ 1

−1
uf(p̄+,j)du+ o(1)

∣∣∣∣ ,
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and the result follows.

2.2 Lemma SA2

This second lemma characterizes the properties of the random partitioning scheme based on quantile

estimates. These results will be used when handling the partitioning scheme PQS,+,n: recall that

p+,j = F̂−1
+ (j/J+,n) in this case, j = 1, 2, · · · , J+,n, and thus set q+,j = F−1

+ (j/J+,n) with F−1
+ (y) =

inf{x : F+(x) ≥ y} with

F+(x) =
P[Xi ≤ x,Xi ≥ x̄]

P[Xi ≥ x̄]
= F (x|Xi ≥ x̄).

Lemma SA2. Let Assumption 1 hold. For PQS,+,n, if

J+,n log(J+,n)

n
→ 0 and

J+,n

log(n)
→∞,

then the following results hold.

(i) max
1≤j≤J+,n

|N+,j/N+ − 1/J+,n| = oP(J−1
+,n).

(ii) max
1≤j≤J+,n

|p+,j − p+,j−1 − (q+,j − q+,j−1)| = oP(J−1
+,n).

Proof of Lemma SA2. Because the sample size N+ is random, we employ the following

result: if N+ →as ∞ and Zn →as Z∞, then ZN+ →as Z∞. In our case, N+ =
∑n

i=1 1(Xi ≥ x̄) and

thus N+/n→as P+. Hence, it suffices to assume N+ →∞ is not random, but we need to prove the

statements in an almost sure sense. The rest of the proof takes limits as N+ →∞.

Part (i) now follows from properties of distribution function and quantile processes (e.g., Shorack

and Wellner, 2009). Using continuity and boundedness of f(x), we have

N+,j =

n∑
i=1

1

(
F̂−1

+

(
j − 1

J+,n

)
≤ Xi < F̂−1

+

(
j

J+,n

))
= N+F̂+

(
F̂−1

+

(
j

J+,n

))
−N+F̂+

(
F̂−1

+

(
j − 1

J+,n

))
{1 + oas(1)} =

N+

J+,n
{1 + oas(1)},
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uniformly in j = 1, 2, · · · , J+,n, under the rate restrictions imposed.

Similarly, part (ii) follows from properties of the modulus of continuity of the sample quantile

process (e.g., Mason (1984) and Shorack and Wellner (2009, Chapter 14)). We have

max
1≤j≤J+,n

|p+,j − p+,j−1 − (q+,j − q+,j−1)|

= max
1≤j≤J+,n

∣∣∣∣F̂−1
+

(
j

J+,n

)
− F−1

+

(
j

J+,n

)
−
(
F̂−1

+

(
j − 1

J+,n

)
− F−1

+

(
j − 1

J+,n

))∣∣∣∣ = oas(J
−1
+,n),

under the rate restrictions imposed.

2.3 Lemma SA3

Our final third technical lemma gives the main convergence results for the spacings estimators used

to construct data-driven choices of partition sizes. We employ the notation introduced in Section

5 of the main paper.

Lemma SA3. Let Assumption 1 hold, and set ` ∈ Z+. If Yi(1) is continuously distributed and

g : [x̄, xu]→ R+ is continuous, then the following results hold.

(i) N `−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
`g(X̄+,(i))→P `!P

`−1
+

∫ xu

x̄
f(x)1−`g(x)dx.

(ii) N `−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
`(Y+,[i] − Y+,[i−1])

2g(X̄+,(i))→P `!P
`−1
+ 2

∫ xu

x̄
f(x)1−`σ2

+(x)g(x)dx.

Proof of Lemma SA3. We prove the result assuming that N+ is nonrandom, and thus limits

are taken as N+ → ∞. Set Ui = F+(X+,i) ∼ Uniform(0, 1) and U(i) = F+(X+,(i)), i = 1, · · · , N+.

Recall that {N+(U(i) − U(i−1)) : i = 2, · · · , N+} =d {Ei/Ē : i = 2, · · · , N+}, where {Ei : i =

2, · · · , N+} i.i.d. random variables with Ei ∼ Exponential(1) and Ē =
∑N+

i=2Ei/N+, and where

Z1 =d Z2 denotes that Z1 and Z2 have the same probability law. Set ūi = (i− 1/2)/N+ and recall

that max2≤i≤N+ supU(i−1)≤u≤U(i)
|u− ūi| →P 0.

For part (i), using the above, N−1
+

∑N+

i=2E
`
i →P E[E`i ] = `!, and uniform continuity of g(·) and
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f(·),

N `−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
`g(X̄+,(i))

=
1

N+

N+∑
i=2

(N+(U(i) − U(i−1)))
` g(F−1

+ (un,i))

f+(F−1
+ (un,i))`

{1 + oP(1)}

=d
1

N+

N+∑
i=2

(
Ei
Ē

)` g(F−1
+ (un,i))

f+(F−1
+ (un,i))`

{1 + oP(1)}

=
1

N+

N+∑
i=2

E[E`i ]
g(F−1

+ (un,i))

f+(F−1
+ (un,i))`

{1 + oP(1)}

→P `!

∫ 1

0

g(F−1
+ (u))

f+(F−1
+ (u))`

du,

and the result follows by change of variables and because f+(x) = f(x)1(x ≥ x̄)/P+. This result

implies, in particular,
∑N+

i=2(X+,(i) −X+,(i−1))
`g(X̄+,(i)) = OP(N1−`

+ ).

For part (ii), let X(+) = (X+,(1), X+,(2), · · · , X+,(N+)). Recall that (Y+,[1], Y+,[2], · · · , Y+,[N+])

are independent conditional on X(+) and E[g(Y+,[i])|X(+)] = E[g(Y+,[i])|X+,(i)] = G(X+,(i)) with

G(x) = E[g(Y+,i)|X+,i = x]. Therefore, E[(Y+,[i] − Y+,[i−1])
2|X(+)] = σ2

+(X+,(i)) + σ2
+(X+,(i−1)) +

(E[Y+,[i]|X(+)] − E[Y+,[i−1]|X(+)])
2 = σ2

+(X+,(i)) + σ2
+(X+,(i−1)) + OP(N−2

+ ), uniformly in i. This

gives

N `−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
`(Y+,[i] − Y+,[i−1])

2g(X̄+,(i)) = T1 + T2,

with

T1 = N `−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
`(σ2

+(X+,[i]) + σ2
+(X+,[i−1]))g(X̄+,(i)) + oP(1),

T2 = N `−1
+

N+∑
i=2

(X+,(i) −X+,(i−1))
`
[
(Y+,[i] − Y+,[i−1])

2 − E[(Y+,[i] − Y+,[i−1])
2|X[+]]

]
g(X̄+,(i)).

Noting that σ2
+(X+,(i)) + σ2

+(X+,(i−1)) = 2σ2
+(X̄+,(i)){1 + oP(1)}, uniformly in i, it follows that

T1 →P `!P `−1
+ 2

∫ xu
x̄ f(x)1−`σ2

+(x)g(x)dx, as in part (i). Thus, it remains to show that T2 →P

0. To this end, first define Ỹi = (Y+,[i] − Y+,[i−1])
2 − E[(Y+,[i] − Y+,[i−1])

2|X(+)], and note that
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E[Ỹi, Ỹi−s|X(+)] = 0 whenever s ≥ 2, which implies

V[T2|X(+)] ≤ N
2(`−1)
+

N+∑
i=2

(X+,(i) −X+,(i−1))
2`V[Ỹi|X(+)]g(X̄+,(i))

2

+ 2N
2(`−1)
+

N+∑
i=2

(X+,(i) −X+,(i−1))
`(X+,(i−1) −X+,(i−2))

`E[ỸiỸi−1|X(+)]g(X̄+,(i))g(X̄+,(i−1))

≤ CN−1
+ ,

and the result follows by the dominated convergence theorem.

The random sample size case (N+ =
∑n

i=1 1(Xi ≥ x̄)) can be handled, for example, using the

approach described in Aras et al. (1989) and references therein.

2.4 Proof of Theorem 1

For the variance part, we have

V[µ̂+(x; J+,n)|Xn] =

J+,n∑
j=1

1(N+,j > 0)1P+,j (x)

N2
+,j

n∑
i=1

1P+,j (Xi)σ
2
+(Xi),

and using uniform continuity of w(·) and σ2
+(·) on [x̄, xu] and Lemma SA1, we obtain

∫ xu

x̄
V[µ̂+(x; J+,n)|Xn]w(x)dx

=

J+,n∑
j=1

1(N+,j > 0)

N2
+,j

(∫ xu

x̄
1P+,j (x)w(x)dx

) n∑
i=1

1P+,j (Xi)σ
2
+(Xi)

=

J+,n∑
j=1

1(N+,j > 0)

N+,j
(p+,j − p+,j−1)σ2

+(p̄+,j)w(p̄+,j){1 + oP(1)}

=
1

n

J+,n∑
j=1

σ2
+(p̄+,j)w(p̄+,j)

f(p̄+,j)
{1 + oP(1)},
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because P[Xi ∈ P+,j ] =
∫ p+,j
p+,j−1

f(x)dx = (p+,j − p+,j−1)f(p̄+,j){1 + o(1)} uniformly in j. Using

properties of the Riemann integral it then follows that

∫ xu

x̄
V[µ̂ES,+(x; J+,n)|Xn]w(x)dx

=
J+,n

n

1

xu − x̄

J+,n∑
j=1

(p+,j − p+,j−1)
σ2

+(p̄+,j)w(p̄+,j)

f(p̄+,j)
{1 + oP(1)}

=
J+,n

n

1

xu − x̄

∫ xu

x̄

σ2
+(x)

f(x)
w(x)dx{1 + oP(1)}

=
J+,n

n
VES,+{1 + oP(1)},

because p+,j+1 − p+,j = (xu − x̄)/J+,n for the evenly spaced partition.

Next, for the bias term, note that
∫ xu
x̄ (E[µ̂+(x; Jn)|Xn]− µ+(x))2w(x)dx = T1 + T2 + T3 with

T1 =

∫ xu

x̄
T1(x)2w(x)dx, T2 =

∫ xu

x̄
T2(x)2w(x)dx, T3 = 2

∫ xu

x̄
T1(x)T2(x)w(x)dx,

T1(x) =

J+,n∑
j=1

1P+,j (x)(1(N+,j > 0)µ+(p̄+,j)− µ+(x)),

T2(x) =

J+,n∑
j=1

1P+,j (x)
1(N+,j > 0)

N+,j

(
n∑
i=1

1P+,j (Xi)(µ+(Xi)− µ+(p̄+,j))

)
.

Using uniform continuity of µ+(·) and w(·) on [x̄, xu] and Lemma SA1, we obtain

T1 =
1

12

J+,n∑
j=1

(
µ

(1)
+ (p̄+,j)

)2
w(p̄+,j)

∫ xu

x̄
1P+,j (x)(p̄+,j − x)2dx{1 + oP(1)}

=
1

12

J+,n∑
j=1

(p+,j − p+,j−1)3
(
µ

(1)
+ (p̄+,j)

)2
w(p̄+,j){1 + oP(1)}

=
1

J2
+,n

(xu − x̄)2

12

∫ xu

x̄

(
µ

(1)
+ (x)

)2
w(x)dx{1 + oP(1)} = J−2

+,nBES,+ {1 + oP(1)},

because
∫ b
a ((a+ b)/2−x)2dx = (b−a)3/12 and p+,j+1−p+,j = (xu− x̄)/J+,n for the evenly spaced

partition. This implies that T1 = OP(J−2
+,n). Thus, to finish the proof, we show that T2 = oP(J−2

+,n)

and T3 = oP(J−2
+,n). For T2, using uniform continuity of µ+(·) and w(·) on [x̄, xu] and Lemma SA1

9



we have

|T2| ≤ C
J+,n∑
j=1

1(N+,j > 0)

J2
+,nN

2
+,j/n

2

(
1

n

n∑
i=1

1P+,j (Xi)
Xi − p̄+,j

p+,j − p+,j−1

)2

{1 + oP(1)} = oP(J−2
+,n),

while, for T3, Cauchy-Swartz inequality implies |T3| ≤
√
T1

√
T2 = OP(J−1

+,n)oP(J−1
+,n) = oP(J−2

+,n).

2.5 Proof of Theorem 2

Recall that p+,j = F̂−1
+ (j/J+,n) and q+,j = F−1

+ (j/J+,n). If J+,n < N+, then 1(N+,j > 0) = 1,

but now the partitioning scheme PQS,+,n is random. For the variance part, letting q̄+,j = (q+,j +

q+,j−1)/2, we have

∫ xu

x̄
V[µ̂QS,+(x; J+,n)|Xn]w(x)dx

=

J+,n∑
j=1

1

N2
+,j

(∫ xu

x̄
1P+,j (x)w(x)dx

) n∑
i=1

1P+,j (Xi)σ
2
+(Xi)

=
J+,n

N+

J+,n∑
j=1

(p+,j − p+,j−1)σ2
+(p̄+,j)w(p̄+,j){1 + oP(1)}

=
J+,n

N+

J+,n∑
j=1

(q+,j − q+,j−1)σ2
+(q̄+,j)w(q̄+,j){1 + oP(1)}

=
J+,n

n

1

P+

∫ xu

x̄
σ2

+(x)w(x)dx{1 + oP(1)} =
J+,n

n
VQS,+{1 + oP(1)},

using Lemma SA2 and properties of the Riemann integral.

For the bias part, using the previous results and proceeding as in the proof of Theorem 1,

∫ xu

x̄
(E[µ̂QS,+(x; Jn)|Xn]− µ+(x))2w(x)dx

=
1

12

J+,n∑
j=1

(p+,j − p+,j−1)3
(
µ

(1)
+ (p̄+,j)

)2
w(p̄+,j){1 + oP(1)}

=
1

12

J+,n∑
j=1

(q+,j − q+,j−1)3
(
µ

(1)
+ (q̄+,j)

)2
w(q̄+,j){1 + oP(1)}

=
1

J2
+,n

P 2
+

12

∫ xu

x̄

(
µ

(1)
+ (x)

f(x)

)2

w(x)dx{1 + oP(1)} = J−2
+,nBQS,+{1 + oP(1)},
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because, for quantile spaced partitions, expanding F−1
+ (u) around ū = F+(q̄+,j) ∈ [(j−1)/J+,n, j/J+,n]),

q+,j − q+,j−1 = F−1
+

(
j

J+,n

)
− F−1

+

(
j − 1

J+,n

)
=

1

f+(q̄+,j)

1

J+,n
{1 + oP(1)},

uniformly in j = 1, 2, · · · , J+,n, where f+(x) = ∂F+(x)/∂x = f(x)1(x ≥ x̄)/P+.

2.6 Proof of Theorem 3

Using Lemma SA3 with ` = 1 and g(x) = 1,

V̂ES,+ =
1

xu − x̄
1

2

N+∑
i=2

(X+,(i) −X+,(i−1))(Y+,[i] − Y+,[i−1])
2 =

1

xu − x̄

∫ xu

x̄
σ2

+(x)dx+ oP(1),

which gives V̂ES,+ →P VES,+. Next, note that for power series estimators, Newey (1997, Theorem

4) gives

sup
x∈[x̄,xu]

|µ̂(1)
+,kn

(x)− µ(1)
+ (x)|2 = OP(k7

n/n+ k−2S+8
n ) = oP(1).

Using this uniform consistency result we have

B̂ES,+ =
(xu − x̄)2

12n

n∑
i=1

1(Xi < x̄)
(
µ̂

(1)
+,kn

(Xi)
)2

=
(xu − x̄)2

12

1

n

n∑
i=1

1(Xi < x̄)
(
µ

(1)
+ (Xi)

)2
+ oP(1)

=
(xu − x̄)2

12

∫ xu

x̄

(
µ

(1)
+ (x)

)2
w(x)dx+ oP(1),

which gives B̂ES,+ →P BES,+.

Putting the above together, consistency of all the data-driven selectors follows.

2.7 Proof of Remark 1

Note that for power series estimators, Newey (1997, Theorem 4) gives

sup
x∈[x̄,xu]

|µ̂+,kn,p(x)− E[Y (1)p|Xi = x]|2 = OP(k3
n/n+ k−2S+2

n ) = oP(1)

11



for p = 1, 2, under the assumptions imposed, which implies

sup
x∈[x̄,xu]

|σ̂2
+(x)− σ2

+|2 = OP(k3
n/n+ k−2S+2

n ) = oP(1).

Using this result, and Lemma SA3 with ` = 1 and g(x) = σ2
+(x),

V̌ES,+ =
1

xu − x̄

N+∑
i=2

(X+,(i) −X+,(i−1))σ̂
2
+,k(X̄+,(i))

=
1

xu − x̄

N+∑
i=2

(X+,(i) −X+,(i−1))σ
2
+,k(X̄+,(i)) + oP(1)→P

1

xu − x̄

∫ xu

x̄
σ2

+(x)dx = VES,+.

Combining this with Theorem SA1, the different consistency results follow.

2.8 Proof of Theorem 4 and Remark 2

Proceeding as in the proofs of Theorem 3 and Remark 1, the results are established using Lemma

SA3, N+/n →P P+, and uniform consistency of power series estimators, as appropriate for each

case.

3 Data-Driven Implementations with Arbitrary w(x)

In this section we provide data-driven implementations for all of our number of bins selectors when

w(x) is taken as given. As discussed in the main text, we estimate the unknown constants using

ideas related to spacings estimators whenever possible, but we also discuss series (polynomial)

nonparametric regression estimates for completeness (to handle the non-continuous outcome case).

Recall the notation introduced in the main paper related to order statistics and concomitants.

For a collection of continuous random variables {(Zi,Wi) : i = 1, 2, · · · , n} we let W(i) be the i-th

order statistic of Wi and Z[i] its corresponding concomitant. That is, W(1) < W(2) < · · · < W(n)

and (Z[i],W(i)) = (Zi,W(i)) for all i = 1, 2, · · · , n. Letting {(Y−,i, X−,i) : i = 1, 2, · · · , N−} and

{(Y+,i, X+,i) : i = 1, 2, · · · , N+} be the subsamples of control (Xi < x̄) and treatment (Xi ≥ x̄)

12



units, respectively. We also have:

X̄−,(i) =
X−,(i) +X−,(i−1)

2
, i = 2, 3, · · · , N−, µ̂

(1)
−,k(x) = r

(1)
k (x)′β̂−,k,

X̄+,(i) =
X+,(i) +X+,(i−1)

2
, i = 2, 3, · · · , N+, µ̂

(1)
+,k(x) = r

(1)
k (x)′β̂+,k,

and r
(1)
k (x) = ∂rk(x)/∂x = (0, 1, 2x, 3x2, · · · , kxk−1)′.

3.1 Evenly Spaced RD Plots

For the case of ES RD Plots with generic w(x) weighting scheme, we propose the following estima-

tors:

V̂ES,− =
1

x̄− xl
n

4

N−∑
i=2

(X−,(i) −X−,(i−1))
2(Y−,[i] − Y−,[i−1])

2w(X̄−,(i)), (SA-1)

B̂ES,− =
(x̄− xl)2

12

N−∑
i=2

(X−,(i) −X−,(i−1))
(
µ̂

(1)
−,k(X̄−,[i])

)2
w(X̄−,(i)), (SA-2)

and

V̂ES,+ =
1

xu − x̄
n

4

N+∑
i=2

(X+,(i) −X+,(i−1))
2(Y+,[i] − Y+,[i−1])

2w(X̄+,(i)), (SA-3)

B̂ES,+ =
(xu − x̄)2

12

N+∑
i=2

(X+,(i) −X+,(i−1))
(
µ̂

(1)
+,k(X̄+,[i])

)2
w(X̄+,(i)). (SA-4)

Thus, our proposed data-driven selectors for ES RD Plots take the form:

ĴES-µ,−,n =


(

2B̂ES,−

V̂ES,−

)1/3

n1/3

 and ĴES-µ,+,n =


(

2B̂ES,+

V̂ES,+

)1/3

n1/3

 , (SA-5)

ĴES-ω,−,n =

ω−
(

2B̂ES,−

V̂ES,−

)1/3

n1/3

 and ĴES-ω,+,n =

ω+

(
2B̂ES,+

V̂ES,+

)1/3

n1/3

 , (SA-6)

ĴES-ϑ,−,n =

⌈
V̂−

V̂ES,−

n

log(n)2

⌉
and ĴES-ϑ,+,n =

⌈
V̂+

V̂ES,+

n

log(n)2

⌉
, (SA-7)

using the estimators in (SA-1)–(SA-4), and where V̂− and V̂+ are consistent estimators of their

population counterparts V− and V+. The following theorem shows that, when the polynomial

13



fits are viewed as nonparametric approximations with k = kn → ∞, the different number of bins

selectors are nonparametric consistent.

Theorem SA1. Suppose Assumption 1 holds with S ≥ 5, w : [xl, xu] 7→ R+ is continuous, and

Yi(0) and Yi(1) are continuously distributed. If k7
n/n→ 0 and kn →∞, then

ĴES-ω,−,n
JES-ω,−,n

→P 1,
ĴES-ϑ,−,n
JES-ϑ,−,n

→P 1,
ĴES-ω,+,n
JES-ω,+,n

→P 1,
ĴES-ϑ,+,n
JES-ϑ,+,n

→P 1,

provided that V̂− →P V− and V̂+ →P V+.

Proof of Theorem SA1. Using Lemma A3 with k = 2 and N+/n→P P+,

V̂ES,+ =
1

xu − x̄
n

4

N+∑
i=2

(X+,(i) −X+,(i−1))
2(Y+,[i] − Y+,[i−1])

2w(X̄+,(i))

=
1

xu − x̄
N+

4P+

N+∑
i=2

(X+,(i) −X+,(i−1))
2(Y+,[i] − Y+,[i−1])

2w(X̄+,(i)) + oP(1)

=
1

xu − x̄

∫ xu

x̄

σ2
+(x)

f+(x)
w(x)dx+ oP(1),

which gives V̂ES,+ →P VES,+. Similarly, V̂ES,− →P VES,−.

Next, recall that for power series estimators supx∈[x̄,xu] |µ̂
(1)
+,kn

(x) − µ
(1)
+ (x)|2 = OP(k7

n/n +

k−2S+8
n ) = oP(1). Using this uniform consistency result, and Lemma A3 with k = 1, we have

B̂ES,+ =
(xu − x̄)2

12

N+∑
i=2

(X+,(i) −X+,(i−1))
(
µ̂

(1)
+,kn

(X̄+,(i))
)2
w(X̄+,(i))

=
(xu − x̄)2

12

N+∑
i=2

(X+,(i) −X+,(i−1))
(
µ

(1)
+ (X̄+,(i))

)2
w(X̄+,(i)) + oP(1)

=
(xu − x̄)2

12

∫ xu

x̄

(
µ

(1)
+ (x)

)2
w(x)dx+ oP(1),

which gives B̂ES,+ →P BES,+. Similarly, B̂ES,− →P BES,−. �

Recall that the special case ωV ,− = ωV ,+ = 1/2 gives ĴES-µ,−,n = ĴES-ω,−,n and ĴES-µ,+,n =

ĴES-ω,+,n. Theorem SA1 therefore gives a formal justification for employing any of the selectors

introduced in our paper for the number of bins in ES RD Plots constructed with a known, arbitrary

14



weight function w(x); a particular choice being w(x) = 1.

As discussed in the main text, when Yi(0) and Yi(1) are not continuously distributed, the

concomitant-based estimation method becomes invalid. In this case, we need to employ other more

standard nonparametric techniques. For example, assuming that E[Yi(t)
2|Xi = x], t = 0, 1, are

twice continuously differentiable, we can use the following estimators:

V̌ES,− =
1

x̄− xl
n

2

N−∑
i=2

(X−,(i) −X−,(i−1))
2σ̂2
−,k(X̄−,(i))w(X̄−,(i)),

V̌ES,+ =
1

xu − x̄
n

2

N+∑
i=2

(X+,(i) −X+,(i−1))
2σ̂2

+,k(X̄+,(i))w(X̄+,(i)),

σ̂2
−,k(x) = µ̂−,k,2(x)− (µ̂−,k,1(x))2, σ̂2

+,k(x) = µ̂+,k,2(x)− (µ̂+,k,1(x))2,

where, for k ∈ Z+ and p ∈ Z++,

µ̂−,k,p(x) = rk(x)′β̂−,k,p, β̂−,k,p = arg min
β∈Rk+1

n∑
i=1

1(Xi < x̄)(Y p
i − rk(Xi)

′β)2,

µ̂+,k,p(x) = rk(x)′β̂+,k,p, β̂+,k,p = arg min
β∈Rk+1

n∑
i=1

1(Xi ≥ x̄)(Y p
i − rk(Xi)

′β)2,

and note that µ̂−,k(x) = µ̂−,k,1(x) and µ̂+,k(x) = µ̂+,k,1(x) with our notation.

From results for power series estimators,

sup
x∈[x̄,xu]

|µ̂+,kn,p(x)− E[Y (1)p|Xi = x]|2 = OP(k3
n/n+ k−2S+2

n ) = oP(1)

for p = 1, 2, under the assumptions imposed, which implies

sup
x∈[x̄,xu]

|σ̂2
+(x)− σ2

+|2 = OP(k3
n/n+ k−2S+2

n ) = oP(1).
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Therefore, Lemma A3 with k = 2 and N+/n→P P+,

V̌ES,+ =
1

xu − x̄
n

2

N+∑
i=2

(X+,(i) −X+,(i−1))
2σ̂2

+(X̄+,(i))w(X̄+,(i))

=
1

xu − x̄
N+

2P+

N+∑
i=2

(X+,(i) −X+,(i−1))
2σ2

+(X̄+,(i))w(X̄+,(i)) + oP(1)

=
1

xu − x̄

∫ xu

x̄

σ2
+(x)

f+(x)
w(x)dx+ oP(1),

which gives V̌ES,+ →P VES,+. Similarly, V̌ES,− →P VES,−.

Combining these results with Theorem SA1, it can easily be shown that the following selectors

are consistent for any continuous, arbitrary choice of w(x):

J̌ES-µ,−,n =


(

2B̂ES,−

V̌ES,−

)1/3

n1/3

 and J̌ES-µ,+,n =


(

2B̂ES,+

V̌ES,+

)1/3

n1/3

 , (SA-8)

J̌ES-ω,−,n =

ω−
(

2B̂ES,−

V̌ES,−

)1/3

n1/3

 and J̌ES-ω,+,n =

ω+

(
2B̂ES,+

V̌ES,+

)1/3

n1/3

 , (SA-9)

J̌ES-ϑ,−,n =

⌈
V̂−

V̌ES,−

n

log(n)2

⌉
and J̌ES-ϑ,+,n =

⌈
V̂+

V̌ES,+

n

log(n)2

⌉
, (SA-10)

provided that V̂− →P V− and V̂+ →P V+.

3.2 Quantile Spaced RD Plots

We discuss generic estimators for QS RD Plots employing an arbitrary, known weighting function

w(x), paralleling the results given above for ES RD Plots. The underlying estimators are:

V̂QS,− =
n

2N−

N−∑
i=2

(X−,(i) −X−,(i−1))(Y−,[i] − Y−,[i−1])
2w(X̄−,(i)), (SA-11)

B̂QS,− =
N2
−

72

N−∑
i=2

(X−,(i) −X−,(i−1))
3
(
µ̂

(1)
−,k(X̄−,(i))

)2
w(X̄−,(i)), (SA-12)
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and

V̂QS,+ =
n

2N+

N+∑
i=2

(X+,(i) −X+,(i−1))(Y+,[i] − Y+,[i−1])
2w(X̄+,(i)), (SA-13)

B̂QS,+ =
N2

+

72

N+∑
i=2

(X+,(i) −X+,(i−1))
3
(
µ̂

(1)
+,k(X̄+,(i))

)2
w(X̄+,(i)). (SA-14)

Therefore, the resulting selectors for QS partitions take the form:

ĴQS-µ,−,n =


(

2B̂QS,−

V̂QS,−

)1/3

n1/3

 and ĴQS-µ,+,n =


(

2B̂QS,+

V̂QS,+

)1/3

n1/3

 , (SA-15)

ĴQS-ω,−,n =

ω−
(

2B̂QS,−

V̂QS,−

)1/3

n1/3

 and ĴQS-ω,+,n =

ω+

(
2B̂QS,+

V̂QS,+

)1/3

n1/3

 , (SA-16)

ĴQS-ϑ,−,n =

⌈
V̂−

V̂QS,−

n

log(n)2

⌉
and ĴQS-ϑ,+,n =

⌈
V̂+

V̂QS,+

n

log(n)2

⌉
, (SA-17)

using the estimators in (SA-11)–(SA-14), and appropriate consistent estimators V̂− and V̂+. As

in the case of Theorem SA1 for ES RD plots, the following theorem shows that these automatic

partition-size selectors are nonparametric consistent if the polynomial fits are viewed as nonpara-

metric approximations with k = kn →∞.

Theorem SA2. Suppose Assumption 1 holds with S ≥ 5, w : [xl, xu] 7→ R+ is continuous, and

Yi(0) and Yi(1) are continuously distributed. If k7
n/n→ 0 and kn →∞, then

ĴQS-ω,−,n
JQS-ω,−,n

→P 1,
ĴQS-ϑ,−,n
JQS-ϑ,−,n

→P 1,
ĴQS-ω,+,n
JQS-ω,+,n

→P 1,
ĴQS-ϑ,+,n
JQS-ϑ,+,n

→P 1,

provided that V̂− →P V− and V̂+ →P V+.

In practice, the choice w(x) = 1 is arguably the simplest one, but our results permit any

continuous function w(x). The proof of Theorem SA2 is very similar to the proof of Theorem SA1

given above, and hence omitted here to conserve space.

Next, for the case of non-continuous potential outcomes Yi(0) and Yi(1), we use the series

polynomial estimation approach already introduced. Assuming that E[Yi(t)
2|Xi = x], t = 0, 1, are
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twice continuously differentiable, we may use the following estimators:

V̌QS,− =
n

N−

N−∑
i=2

(X−,(i) −X−,(i−1))σ̂
2
−,k(X̄−,(i))w(X̄−,(i)),

V̌QS,+ =
n

N+

N+∑
i=2

(X+,(i) −X+,(i−1))σ̂
2
+,k(X̄+,(i))w(X̄+,(i)),

where σ̂2
−,k(x) and σ̂2

+,k(x) are the polynomial approximations already discussed. The associated

data-driven partition-size selectors are

J̌QS-µ,−,n =


(

2B̂QS,−

V̌QS,−

)1/3

n1/3

 and J̌QS-µ,+,n =


(

2B̂QS,+

V̌QS,+

)1/3

n1/3

 , (SA-18)

J̌QS-ω,−,n =

ω−
(

2B̂QS,−

V̌QS,−

)1/3

n1/3

 and J̌QS-ω,+,n =

ω+

(
2B̂QS,+

V̌QS,+

)1/3

n1/3

 , (SA-19)

J̌QS-ϑ,−,n =

⌈
V̂−

V̌QS,−

n

log(n)2

⌉
and J̌QS-ϑ,+,n =

⌈
V̂+

V̌QS,+

n

log(n)2

⌉
, (SA-20)

which are easily shown to be consistent in the sense of Theorem SA2, provided the conditions in

that theorem hold.

4 Other Empirical Applications

In this section we include three additional empirical applications to illustrate the performance of

our proposed methods when applied to different real datasets. Software packages in R and STATA

are described in Calonico et al. (2015, 2014a).

4.1 U.S. Senate Data

We employ an extract of the dataset constructed by Cattaneo et al. (2015), who study several

measures of incumbency advantage in U.S. Senate elections for the period 1914–2010. In particular,

we focus here on the RD effect of the Democratic party winning a U.S. Senate seat on the vote

share obtained in the following election for that same seat. This empirical illustration is analogous
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to the one presented by Lee (2008) for U.S. House elections: the running variable is the state-level

margin of victory of the Democratic party in an election for a Senate seat, the threshold is x̄ = 0

and the outcome is the vote share of the Democratic party in the following election for the same

Senate seat in the state, which occurs six years later. The unit of observation is the state, and the

data set has a total of n = 1, 297 state-year complete observations.

Results are presented in Figures SA-1 and SA-2.

4.2 Progresa/Oportunidades Data

We illustrate the performance of our methods employing household data from Oportunidades (for-

merly known as Progresa), a well-known large-scale anti-poverty conditional cash transfer program

in Mexico. This conditional cash transfer program targeted poor households in rural and urban

areas in Mexico. The program started in 1998 under the name of Progresa in rural areas. The most

important elements of the program are the nutrition, health and education components. The nu-

trition component consists of a cash grant for all treated households and an additional supplement

for households with young children and pregnant or lactating mothers. The educational grant is

linked to regular attendance in school and starts on the third grade of primary school and continues

until the last grade of secondary school. The transfer constituted a significant contribution to the

income of eligible families.

This social program is best known for its experimental design: treatment was initially ran-

domly assigned at the locality level in rural areas. Progresa was expanded to urban areas urban

in 2003. Unlike the rural program, the allocation across treatment and control areas was not

random. Instead, it was first offered in blocks with the highest density of poor households. In

order to accurately target the program to poor households, in both rural and urban areas Mexi-

can officials constructed a pre-intervention (at baseline) household poverty-index that determined

each household’s eligibility. Thus, Progresa/Oportunidades’ eligibility assignment rule naturally

leads to sharp (intention-to-treat) regression-discontinuity designs. For additional details for data

construction, empirical analysis and related literature, see Calonico et al. (2014b, Section S.4).

Our empirical exercise investigates the program treatment effect on household non-food con-

sumption expenditures two years after its implementation. In this application, Xi denotes the
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household’s poverty-index, x̄ = 0 denotes the centered cutoff for each RD design, and Yi denotes

per capita non-food consumption. Our final database contains 691 control households (Xi < 0)

and 2, 118 intention-to-treat households (Xi ≥ 0) in the urban RD design (n = 2, 809, Xi ∈

[−2.25 , 4.11]).

Results are presented in Figures SA-3 and SA-4.

4.3 Head Start Data

Head Start is a program of the United States Department of Health and Human Services that

provides early childhood education, health, nutrition, and parent involvement services to low-

income children and their families. It was established in 1965 as part of the War on Poverty, in

order to foster stable family relationships, enhance children’s physical and emotional well-being,

and establish an environment to develop cognitive skills.

For each county, eligibility is based on the county’s poverty rate, inducing a natural RD design.

Ludwig and Miller (2007) uses this to identify the program’s effects on health and schooling. For

each county i = 1, 2, ..., n, the forcing variable is the county’s 1960 poverty rate with treatment

assignment given by Ti = 1(Xi ≥ x̄), where Xi represents the county’s poverty rate in 1960 and x̄

is the fixed threshold level. The cutoff is set to the poverty rate value of the 300th poorest county

in 1960, which in this dataset is given by x̄ = 59.198. Here we consider as outcome variable the

mortality rates per 100, 000 for children between 5–9 years old, with Head Start-related causes, for

1973− 1983 (see Panel A, Figure IV in Ludwig and Miller (2007)).

Results are presented in Figures SA-5 and SA-6.

4.4 Summary of Results

In all the empirical applications we considered, the data-driven selectors introduced in the main

paper seemed to perform very well. The mimicking variance selector for the number of bins con-

sistently delivered a disciplined “cloud of points”, which appears to be substantially more useful

than the scatter plot of the raw data. In addition, the IMSE-optimal choice of number of bins

also performed well, in all cases “tracing out” the estimated smooth polynomial regression fits. As

for the implementations, spacings estimators perform on par with polynomial estimators in all the

20



applications considered. Finally, it is worth noting that ES and QS RD plots do not necessarily

deliver different number of bins. For example, in the Head Start data set, the mimicking variance

choices are essentially identical for both types of RD plots.
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Ĵ
E
S
-ϑ
,−
,n

=
6
9

;
Ĵ
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Ĵ
E
S
-µ
,−
,n

=
7

;
Ĵ
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5 Complete Simulation Results

We report the results from a Monte Carlo experiment to study the finite-sample behavior of our

proposed methods. We consider several data generating processes, which vary in the distribution

of the running variable, the conditional variance, and the distribution of the unobserved error term

in the regression function.

Specifically, the data is generated as i.i.d. draws, {(Yi, Xi)
′ : i = 1, 2, ..., n} following

Yi = µ(Xi) + εi, Xi ∼ Fx, εi ∼ σ(Xi)Fε,

where

µ(x) =

 0.48 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 if x < 0

0.52 + 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 if x ≥ 0
,

and Fx equals either (2B(p1, p2)− 1), with B(p1, p2) denoting a Beta distribution with parameters

p1 and p2, or equals a mixture of two normal distributions with means µ1 and µ2, respectively, same

standard deviations set to 1/4 and mixing weights ω1 and ω2, respectively. In addition, σ(x) is

either equal to 1 (homoskedasticity) or equal to exp(−|x|/2) (heteroskedasticity), and Fε is either

N (0, 1) or (χ4 − 4)/
√

8. The functional form of µ(x) is obtained by fitting a 5-th order global

polynomial with different coefficients for control and treatment units separately using the original

data of Lee (2008), after discarding observations with past margin of victory greater than 99 and

less than −99 percentage points. Figure SA-7 plots the regression function µ(x) and the different

choices for the density of Xi. Notice that some of these densities take on “low” values in some

regions of the support of Xi, in same cases near the RD cutoff.

Our Monte Carlo experiment considers 16 models that combine different choices of Fx, σ(x)

and Fε, as described in Table SA-1. For each model in Table SA-1, we set n = 5, 000 and generate

5, 000 simulations to compute the IMSE of both ES and QS partitioning schemes for different

possible number of bins, as well as for the IMSE-optimal data-driven selector proposed. In each

case considered, we also computed the mimicking variance selectors introduced in the paper, both

infeasible and data-driven versions.

All tables include results for both ES and QS RD plots organized in two distinct panels. Panel
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A focuses attention on the IMSE of different partitioning schemes in finite samples, as well as

the performance of the associated IMSE-optimal data-driven selectors. All IMSEs are normalized

relative to the IMSE evaluated at the optimal partition-size choice to avoid any scaling issue. Panel

B reports several features of the empirical (finite-sample) distribution of the different data-driven

number of bins selectors introduced in this paper: (i) spacings-based selectors for ES RD plots,

(ii) polynomial-based selectors for ES RD plots, (iii) spacings-based selectors for QS RD plots,

and (iv) polynomial-based selectors for QS RD plots. Therefore, our Monte Carlo experiment is

designed to capture the finite-sample performance of Theorems 1 and 2 in terms of providing a

good approximation to the IMSE (Panel A), and the finite-sample performance of Theorems 3 and

4 as well as the other consistency results discussed in the remarks in the paper (Panel B).

The results of our simulation experiment are very encouraging. First, in all cases the IMSE

is minimized at the corresponding IMSE-optimal number of bins choice derived in the paper,

suggesting that Theorems 1 and 2 provide a good finite-sample approximation. The theoretical

IMSE-optimal number of bins almost always exactly coincides with the simulated IMSE-optimal

number of bins. Second, in all models we find that our proposed data-driven implementations of

the different number of bins selectors perform quite well, exhibiting a concentrated finite-sample

distribution centered at the target population (optimal) choice introduced in this paper. That is,

the summary statistics in Panel B of each table show that our data-driven implementations of the

population selectors choices have a finite sample distribution well centered and concentrated around

their population targets, when using either spacings estimators or polynomial estimators.

In sum, our extensive simulation study indicates that the different data-driven number of bins

selectors underlying the construction of the RD plots perform well in finite samples.
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Figure SA-7: Data Generating Processes
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(a) Regression function, µ(x).
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Table SA-1: Data Generating Processes

Panel A: Models 1 to 8

Model p1 p2 σ2(x) Fε
1 1 1 1 N (0, 1)

2 0.5 0.5 1 N (0, 1)

3 0.2 0.8 exp(−|x|/2) N (0, 1)

4 0.8 0.2 exp(−|x|/2) N (0, 1)

5 1 1 1 (χ4 − 4)/
√

8

6 0.5 0.5 1 (χ4 − 4)/
√

8

7 0.2 0.8 exp(−|x|/2) (χ4 − 4)/
√

8

8 0.8 0.2 exp(−|x|/2) (χ4 − 4)/
√

8

Panel B: Models 9 to 16

Model µ1 µ2 ω1 ω2 σ2(x) Fε
9 -0.25 0.25 0.5 0.5 1 N (0, 1)

10 -0.5 0.5 0.5 0.5 1 N (0, 1)

11 -0.5 0.5 0.8 0.2 exp(−|x|/2) N (0, 1)

12 -0.5 0.5 0.2 0.8 exp(−|x|/2) N (0, 1)

13 -0.25 0.25 0.5 0.5 1 (χ4 − 4)/
√

8

14 -0.5 0.5 0.5 0.5 1 (χ4 − 4)/
√

8

15 -0.5 0.5 0.8 0.2 exp(−|x|/2) (χ4 − 4)/
√

8

16 -0.5 0.5 0.2 0.8 exp(−|x|/2) (χ4 − 4)/
√

8
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Table SA-2: Simulations Results for Model 1

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

20 1.047 11 1.148 20 1.047 11 1.148
21 1.027 12 1.081 21 1.027 12 1.081
22 1.013 13 1.039 22 1.013 13 1.039
23 1.005 14 1.014 23 1.005 14 1.014
24 1.000 15 1.002 24 1.000 15 1.002
25 1.000 16 1.000 25 1.000 16 1.000
26 1.003 17 1.006 26 1.003 17 1.006
27 1.008 18 1.017 27 1.008 18 1.017
28 1.016 19 1.033 28 1.016 19 1.033
29 1.025 20 1.053 29 1.025 20 1.053
30 1.036 21 1.076 30 1.036 21 1.076

ĴES-µ,−,n 1.033 ĴES-µ,+,n 0.9435 ĴQS-µ,−,n 1.072 ĴQS-µ,+,n 0.9351
J̌ES-µ,−,n 1.034 J̌ES-µ,+,n 0.9428 J̌QS-µ,−,n 1.073 J̌QS-µ,+,n 0.9347

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 25 ĴES-µ,−,n 22 25 26 25.95 27 29 0.93
J̌ES-µ,−,n 23 25 26 25.93 26 29 0.87

JES-ϑ,−,n = 118 ĴES-ϑ,−,n 105 116 120 119.6 123 139 5.05
J̌ES-ϑ,−,n 110 117 119 119.3 121 131 2.72

JES-µ,+,n = 16 ĴES-µ,+,n 14 15 15 15.34 16 17 0.57
J̌ES-µ,+,n 14 15 15 15.34 16 17 0.55

JES-ϑ,+,n = 116 ĴES-ϑ,+,n 103 113 117 116.7 120 139 4.71
J̌ES-ϑ,+,n 107 115 117 116.7 118 128 2.65

JQS-µ,−,n = 25 ĴQS-µ,−,n 23 26 27 26.91 27 30 0.92
J̌QS-µ,−,n 23 26 27 26.89 27 30 0.90

JQS-ϑ,−,n = 118 ĴQS-ϑ,−,n 108 117 120 119.6 122 134 3.66
J̌QS-ϑ,−,n 110 117 119 119.3 121 131 2.71

JQS-µ,+,n = 16 ĴQS-µ,+,n 14 15 15 15.21 15 17 0.51
J̌QS-µ,+,n 14 15 15 15.21 15 17 0.50

JQS-ϑ,+,n = 116 ĴQS-ϑ,+,n 106 114 117 116.6 119 130 3.50
J̌QS-ϑ,+,n 107 115 117 116.7 118 128 2.65

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-3: Simulations Results for Model 2

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

26 1.032 11 1.157 19 1.047 13 1.086
27 1.019 12 1.088 20 1.026 14 1.045
28 1.010 13 1.043 21 1.012 15 1.018
29 1.004 14 1.017 22 1.004 16 1.004
30 1.001 15 1.003 23 1.000 17 0.998
31 1.000 16 1.000 24 1.000 18 1.000
32 1.001 17 1.004 25 1.004 19 1.007
33 1.004 18 1.015 26 1.010 20 1.019
34 1.009 19 1.030 27 1.019 21 1.035
35 1.015 20 1.050 28 1.029 22 1.054
36 1.022 21 1.072 29 1.042 23 1.075

ĴES-µ,−,n 1.086 ĴES-µ,+,n 0.9009 ĴQS-µ,−,n 0.9271 ĴQS-µ,+,n 0.9399
J̌ES-µ,−,n 1.088 J̌ES-µ,+,n 0.9005 J̌QS-µ,−,n 0.9292 J̌QS-µ,+,n 0.9394

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 31 ĴES-µ,−,n 30 33 34 34.13 35 39 1.09
J̌ES-µ,−,n 31 33 34 34.08 35 38 1.01

JES-ϑ,−,n = 114 ĴES-ϑ,−,n 98 112 115 115.1 118.2 134 5.18
J̌ES-ϑ,−,n 104 112 114 114.5 117 126 3.05

JES-µ,+,n = 16 ĴES-µ,+,n 13 14 15 14.84 15 18 0.72
J̌ES-µ,+,n 13 14 15 14.83 15 17 0.70

JES-ϑ,+,n = 118 ĴES-ϑ,+,n 102 116 120 120.3 124 145 5.63
J̌ES-ϑ,+,n 110 118 120 120.2 122 133 3.22

JQS-µ,−,n = 24 ĴQS-µ,−,n 21 22 22 22.24 23 24 0.53
J̌QS-µ,−,n 21 22 22 22.2 22 24 0.50

JQS-ϑ,−,n = 114 ĴQS-ϑ,−,n 104 112 115 114.8 117 128 3.46
J̌QS-ϑ,−,n 106 113 114 114.4 116 124 2.56

JQS-µ,+,n = 18 ĴQS-µ,+,n 15 16 17 16.71 17 20 0.65
J̌QS-µ,+,n 15 16 17 16.72 17 20 0.65

JQS-ϑ,+,n = 118 ĴQS-ϑ,+,n 108 117 120 119.9 122 134 3.66
J̌QS-ϑ,+,n 109 118 120 119.9 122 132 2.81

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-4: Simulations Results for Model 3

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

49 1.008 8 1.279 40 1.010 8 1.265
50 1.005 9 1.149 41 1.006 9 1.139
51 1.002 10 1.071 42 1.002 10 1.064
52 1.001 11 1.027 43 1.000 11 1.023
53 1.000 12 1.005 44 1.000 12 1.003
54 1.000 13 1.000 45 1.000 13 1.000
55 1.001 14 1.007 46 1.001 14 1.008
56 1.002 15 1.022 47 1.003 15 1.025
57 1.004 16 1.044 48 1.006 16 1.048
58 1.006 17 1.071 49 1.010 17 1.076
59 1.009 18 1.102 50 1.014 18 1.108

ĴES-µ,−,n 1.09 ĴES-µ,+,n 0.9534 ĴQS-µ,−,n 0.869 ĴQS-µ,+,n 0.9628
J̌ES-µ,−,n 1.097 J̌ES-µ,+,n 0.9504 J̌QS-µ,−,n 0.872 J̌QS-µ,+,n 0.9609

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 54 ĴES-µ,−,n 54 58 59 59.05 60 65 1.59
J̌ES-µ,−,n 54 58 59 58.85 60 64 1.28

JES-ϑ,−,n = 112 ĴES-ϑ,−,n 90 108 112 112.1 116 138 6.65
J̌ES-ϑ,−,n 99 108 111 110.9 114 127 4.08

JES-µ,+,n = 13 ĴES-µ,+,n 11 12 13 12.79 13 16 0.73
J̌ES-µ,+,n 11 12 13 12.8 13 16 0.68

JES-ϑ,+,n = 149 ĴES-ϑ,+,n 111 140 147 147.6 155 193 10.94
J̌ES-ϑ,+,n 125 143 148 147.8 152 174 6.47

JQS-µ,−,n = 45 ĴQS-µ,−,n 36 38 39 38.8 39 42 0.82
J̌QS-µ,−,n 36 38 39 38.72 39 42 0.78

JQS-ϑ,−,n = 155 ĴQS-ϑ,−,n 140 151 154 154.2 157 168 4.07
J̌QS-ϑ,−,n 142 151 153 153.3 155 165 3.12

JQS-µ,+,n = 13 ĴQS-µ,+,n 11 12 13 12.74 13 15 0.61
J̌QS-µ,+,n 11 12 13 12.76 13 15 0.59

JQS-ϑ,+,n = 149 ĴQS-ϑ,+,n 119 142 147 147.5 153 182 8.29
J̌QS-ϑ,+,n 125 143 147 147.8 152 174 6.47

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-5: Simulations Results for Model 4

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

16 1.080 19 1.059 15 1.072 30 1.025
17 1.047 20 1.035 16 1.039 31 1.015
18 1.024 21 1.018 17 1.017 32 1.008
19 1.010 22 1.008 18 1.005 33 1.003
20 1.002 23 1.002 19 1.000 34 1.001
21 1.000 24 1.000 20 1.000 35 1.000
22 1.002 25 1.002 21 1.005 36 1.001
23 1.009 26 1.006 22 1.014 37 1.003
24 1.018 27 1.014 23 1.027 38 1.007
25 1.030 28 1.023 24 1.042 39 1.011
26 1.044 29 1.034 25 1.059 40 1.017

ĴES-µ,−,n 1.065 ĴES-µ,+,n 0.8511 ĴQS-µ,−,n 0.9663 ĴQS-µ,+,n 0.9004
J̌ES-µ,−,n 1.067 J̌ES-µ,+,n 0.8504 J̌QS-µ,−,n 0.9679 J̌QS-µ,+,n 0.9003

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 21 ĴES-µ,−,n 19 22 23 22.86 24 28 1.04
J̌ES-µ,−,n 19 22 23 22.83 23 26 0.91

JES-ϑ,−,n = 145 ĴES-ϑ,−,n 106 141 148 148.3 156 201 11.48
J̌ES-ϑ,−,n 125 143 147 147.6 152 179 6.59

JES-µ,+,n = 24 ĴES-µ,+,n 17 20 21 20.91 22 27 1.33
J̌ES-µ,+,n 17 20 21 20.91 22 27 1.30

JES-ϑ,+,n = 102 ĴES-ϑ,+,n 82 99 103 103.6 108 130 6.29
J̌ES-ϑ,+,n 90 101 103 103.5 106 119 3.95

JQS-µ,−,n = 20 ĴQS-µ,−,n 17 19 19 19.44 20 23 0.74
J̌QS-µ,−,n 17 19 19 19.43 20 22 0.70

JQS-ϑ,−,n = 145 ĴQS-ϑ,−,n 120 144 149 149.6 155 187 8.59
J̌QS-ϑ,−,n 126 145 149 149.1 153 181 6.60

JQS-µ,+,n = 35 ĴQS-µ,+,n 28 31 32 31.91 33 40 1.61
J̌QS-µ,+,n 28 31 32 31.92 33 40 1.61

JQS-ϑ,+,n = 141 ĴQS-ϑ,+,n 130 140 143 142.9 146 159 3.97
J̌QS-ϑ,+,n 131 141 143 142.9 145 155 3.25

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-6: Simulations Results for Model 5

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

41 1.013 7 1.247 30 1.016 6 1.472
42 1.008 8 1.113 31 1.008 7 1.240
43 1.004 9 1.039 32 1.003 8 1.110
44 1.002 10 1.004 33 1.000 9 1.041
45 1.000 11 0.994 34 0.999 10 1.008
46 1.000 12 1.000 35 1.000 11 1.000
47 1.001 13 1.018 36 1.002 12 1.008
48 1.002 14 1.045 37 1.006 13 1.028
49 1.004 15 1.078 38 1.011 14 1.057
50 1.007 16 1.116 39 1.017 15 1.092
51 1.011 17 1.158 40 1.024 16 1.131

ĴES-µ,−,n 1.095 ĴES-µ,+,n 0.9544 ĴQS-µ,−,n 0.8966 ĴQS-µ,+,n 0.9651
J̌ES-µ,−,n 1.099 J̌ES-µ,+,n 0.9521 J̌QS-µ,−,n 0.8977 J̌QS-µ,+,n 0.9629

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 46 ĴES-µ,−,n 44 50 51 50.93 52 58 1.83
J̌ES-µ,−,n 45 50 51 50.82 52 57 1.61

JES-ϑ,−,n = 109 ĴES-ϑ,−,n 77 104 110 109.9 115 139 8.11
J̌ES-ϑ,−,n 92 105 109 109.1 113 130 5.60

JES-µ,+,n = 12 ĴES-µ,+,n 9 11 11 11.17 12 15 0.74
J̌ES-µ,+,n 9 11 11 11.17 12 14 0.69

JES-ϑ,+,n = 119 ĴES-ϑ,+,n 82 113 120 120.4 127 161 10.36
J̌ES-ϑ,+,n 102 116 120 120.4 124 141 5.89

JQS-µ,−,n = 35 ĴQS-µ,−,n 28 30 31 31.02 32 35 0.86
J̌QS-µ,−,n 28 30 31 31 31 35 0.84

JQS-ϑ,−,n = 109 ĴQS-ϑ,−,n 99 107 109 109.4 111 120 2.75
J̌QS-ϑ,−,n 101 108 109 109.1 111 117 2.17

JQS-µ,+,n = 11 ĴQS-µ,+,n 9 11 11 11.06 11 13 0.59
J̌QS-µ,+,n 9 11 11 11.06 11 13 0.57

JQS-ϑ,+,n = 119 ĴQS-ϑ,+,n 99 115 119 119.8 124 149 6.86
J̌QS-ϑ,+,n 101 116 120 120.1 124 140 5.55

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-7: Simulations Results for Model 6

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

13 1.119 16 1.069 12 1.121 22 1.044
14 1.068 17 1.039 13 1.066 23 1.026
15 1.035 18 1.018 14 1.031 24 1.014
16 1.014 19 1.006 15 1.011 25 1.005
17 1.003 20 1.000 16 1.001 26 1.001
18 1.000 21 1.000 17 1.000 27 1.000
19 1.003 22 1.004 18 1.006 28 1.002
20 1.011 23 1.012 19 1.017 29 1.005
21 1.023 24 1.022 20 1.032 30 1.011
22 1.039 25 1.035 21 1.050 31 1.019
23 1.057 26 1.051 22 1.072 32 1.029

ĴES-µ,−,n 1.065 ĴES-µ,+,n 0.8495 ĴQS-µ,−,n 1.008 ĴQS-µ,+,n 0.9261
J̌ES-µ,−,n 1.065 J̌ES-µ,+,n 0.8493 J̌QS-µ,−,n 1.008 J̌QS-µ,+,n 0.9264

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 18 ĴES-µ,−,n 16 19 20 19.71 20 24 1.23
J̌ES-µ,−,n 16 19 20 19.69 20 24 1.17

JES-ϑ,−,n = 119 ĴES-ϑ,−,n 87 113 120 120.2 127 165 9.88
J̌ES-ϑ,−,n 102 116 120 119.7 124 145 5.92

JES-µ,+,n = 21 ĴES-µ,+,n 13 17 18 18.14 19 25 1.71
J̌ES-µ,+,n 14 17 18 18.13 19 26 1.69

JES-ϑ,+,n = 102 ĴES-ϑ,+,n 75 97 102 102.4 108 137 7.90
J̌ES-ϑ,+,n 82 98 102 102.2 106 124 5.77

JQS-µ,−,n = 17 ĴQS-µ,−,n 15 17 17 17.31 18 20 0.94
J̌QS-µ,−,n 15 17 17 17.31 18 20 0.92

JQS-ϑ,−,n = 119 ĴQS-ϑ,−,n 97 115 120 119.8 124 146 6.81
J̌QS-ϑ,−,n 104 116 119 119.6 123 142 5.43

JQS-µ,+,n = 27 ĴQS-µ,+,n 22 25 25 25.42 26 31 1.32
J̌QS-µ,+,n 22 25 25 25.42 26 31 1.31

JQS-ϑ,+,n = 102 ĴQS-ϑ,+,n 94 100 101 101.3 103 109 2.43
J̌QS-ϑ,+,n 96 100 101 101.2 102 109 1.85

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-8: Simulations Results for Model 7

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

49 1.008 8 1.279 40 1.010 8 1.265
50 1.005 9 1.149 41 1.006 9 1.139
51 1.002 10 1.071 42 1.002 10 1.064
52 1.001 11 1.027 43 1.000 11 1.023
53 1.000 12 1.005 44 1.000 12 1.003
54 1.000 13 1.000 45 1.000 13 1.000
55 1.001 14 1.007 46 1.001 14 1.008
56 1.002 15 1.022 47 1.003 15 1.025
57 1.004 16 1.044 48 1.006 16 1.048
58 1.006 17 1.071 49 1.010 17 1.076
59 1.009 18 1.102 50 1.014 18 1.108

ĴES-µ,−,n 1.097 ĴES-µ,+,n 0.9335 ĴQS-µ,−,n 0.9043 ĴQS-µ,+,n 0.9649
J̌ES-µ,−,n 1.104 J̌ES-µ,+,n 0.9308 J̌QS-µ,−,n 0.9079 J̌QS-µ,+,n 0.9629

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 54 ĴES-µ,−,n 53 58 59 59.38 61 66 1.98
J̌ES-µ,−,n 54 58 59 59.15 60 65 1.60

JES-ϑ,−,n = 113 ĴES-ϑ,−,n 82 108 114 114.1 120 149 8.89
J̌ES-ϑ,−,n 94 108 113 112.7 117 137 6.08

JES-µ,+,n = 13 ĴES-µ,+,n 10 12 13 12.57 13 17 0.82
J̌ES-µ,+,n 10 12 13 12.59 13 16 0.76

JES-ϑ,+,n = 144 ĴES-ϑ,+,n 105 142 152 152.6 162 227 15.09
J̌ES-ϑ,+,n 117 146 152 152.5 159 188 9.37

JQS-µ,−,n = 45 ĴQS-µ,−,n 38 40 40 40.33 41 44 0.84
J̌QS-µ,−,n 38 40 40 40.24 41 44 0.82

JQS-ϑ,−,n = 156 ĴQS-ϑ,−,n 138 153 156 156.6 160 177 4.77
J̌QS-ϑ,−,n 142 153 156 155.6 158 170 3.95

JQS-µ,+,n = 13 ĴQS-µ,+,n 11 12 13 12.7 13 16 0.69
J̌QS-µ,+,n 11 12 13 12.71 13 16 0.67

JQS-ϑ,+,n = 145 ĴQS-ϑ,+,n 112 143 150 150.8 158 208 11.11
J̌QS-ϑ,+,n 115 144 151 151.1 157 188 9.56

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-9: Simulations Results for Model 8

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

16 1.080 19 1.059 15 1.072 30 1.025
17 1.047 20 1.035 16 1.039 31 1.015
18 1.024 21 1.018 17 1.017 32 1.008
19 1.010 22 1.008 18 1.005 33 1.003
20 1.002 23 1.002 19 1.000 34 1.001
21 1.000 24 1.000 20 1.000 35 1.000
22 1.002 25 1.002 21 1.005 36 1.001
23 1.009 26 1.006 22 1.014 37 1.003
24 1.018 27 1.014 23 1.027 38 1.007
25 1.030 28 1.023 24 1.042 39 1.011
26 1.044 29 1.034 25 1.059 40 1.017

ĴES-µ,−,n 1.039 ĴES-µ,+,n 0.8473 ĴQS-µ,−,n 1.019 ĴQS-µ,+,n 0.9442
J̌ES-µ,−,n 1.042 J̌ES-µ,+,n 0.8474 J̌QS-µ,−,n 1.021 J̌QS-µ,+,n 0.9443

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 21 ĴES-µ,−,n 18 22 22 22.36 23 26 1.16
J̌ES-µ,−,n 18 22 22 22.32 23 26 1.04

JES-ϑ,−,n = 150 ĴES-ϑ,−,n 103 139 147 147.9 156 207 12.86
J̌ES-ϑ,−,n 121 142 146 146.7 151.2 175 7.34

JES-µ,+,n = 24 ĴES-µ,+,n 16 20 21 20.85 22 26 1.47
J̌ES-µ,+,n 16 20 21 20.84 22 26 1.40

JES-ϑ,+,n = 102 ĴES-ϑ,+,n 68 94 100 100.5 107 140 9.47
J̌ES-ϑ,+,n 77 95 100 100.1 105 128 6.87

JQS-µ,−,n = 20 ĴQS-µ,−,n 17 20 21 20.53 21 24 0.93
J̌QS-µ,−,n 17 20 20 20.5 21 24 0.89

JQS-ϑ,−,n = 151 ĴQS-ϑ,−,n 119 143 149 149 155 191 9.17
J̌QS-ϑ,−,n 123 144 148 148.4 153 176 7.31

JQS-µ,+,n = 35 ĴQS-µ,+,n 28 32 34 33.72 35 43 1.85
J̌QS-µ,+,n 29 32 34 33.72 35 43 1.84

JQS-ϑ,+,n = 142 ĴQS-ϑ,+,n 122 136 139 139.2 142 157 4.79
J̌QS-ϑ,+,n 123 136 139 139.2 142 154 4.18

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-10: Simulations Results for Model 9

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

15 1.088 12 1.133 61 1.006 23 1.028
16 1.051 13 1.075 62 1.004 24 1.015
17 1.026 14 1.037 63 1.002 25 1.006
18 1.010 15 1.014 64 1.001 26 1.001
19 1.002 16 1.003 65 1.000 27 0.999
20 1.000 17 1.000 66 1.000 28 1.000
21 1.003 18 1.004 67 1.000 29 1.003
22 1.010 19 1.014 68 1.001 30 1.009
23 1.020 20 1.027 69 1.002 31 1.016
24 1.034 21 1.045 70 1.004 32 1.025
25 1.049 22 1.065 71 1.006 33 1.035

ĴES-µ,−,n 0.9429 ĴES-µ,+,n 0.9666 ĴQS-µ,−,n 1.026 ĴQS-µ,+,n 0.71
J̌ES-µ,−,n 0.9447 J̌ES-µ,+,n 0.9633 J̌QS-µ,−,n 1.027 J̌QS-µ,+,n 0.7095

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 20 ĴES-µ,−,n 16 19 19 19.22 20 23 0.94
J̌ES-µ,−,n 17 19 19 19.19 20 23 0.86

JES-ϑ,−,n = 103 ĴES-ϑ,−,n 71 97 103 103.1 109 132 8.83
J̌ES-ϑ,−,n 83 99 102 102.4 106 123 5.77

JES-µ,+,n = 17 ĴES-µ,+,n 14 16 17 16.81 17 20 0.82
J̌ES-µ,+,n 15 16 17 16.83 17 20 0.77

JES-ϑ,+,n = 96 ĴES-ϑ,+,n 69 92 96 96.25 101 120 7.06
J̌ES-ϑ,+,n 77 93 97 96.48 100 114 4.64

JQS-µ,−,n = 66 ĴQS-µ,−,n 45 64 68 68.02 72 89 6.29
J̌QS-µ,−,n 45 64 68 68.01 72 89 6.26

JQS-ϑ,−,n = 103 ĴQS-ϑ,−,n 93 101 103 102.7 105 114 3.02
J̌QS-ϑ,−,n 95 101 103 102.6 104 112 2.18

JQS-µ,+,n = 28 ĴQS-µ,+,n 14 18 19 19.77 21 41 3.08
J̌QS-µ,+,n 14 18 19 19.77 21 41 3.08

JQS-ϑ,+,n = 96 ĴQS-ϑ,+,n 86 94 96 95.83 98 107 2.66
J̌QS-ϑ,+,n 89 95 96 95.91 97 103 1.86

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-11: Simulations Results for Model 10

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

17 1.064 11 1.129 28 1.018 13 1.110
18 1.036 12 1.068 29 1.009 14 1.062
19 1.018 13 1.030 30 1.003 15 1.030
20 1.006 14 1.008 31 1.000 16 1.011
21 1.001 15 0.999 32 0.999 17 1.002
22 1.000 16 1.000 33 1.000 18 1.000
23 1.003 17 1.008 34 1.003 19 1.004
24 1.010 18 1.021 35 1.007 20 1.013
25 1.020 19 1.039 36 1.012 21 1.027
26 1.032 20 1.061 37 1.019 22 1.043
27 1.046 21 1.086 38 1.027 23 1.062

ĴES-µ,−,n 1.047 ĴES-µ,+,n 0.9967 ĴQS-µ,−,n 1.044 ĴQS-µ,+,n 0.8817
J̌ES-µ,−,n 1.049 J̌ES-µ,+,n 0.995 J̌QS-µ,−,n 1.045 J̌QS-µ,+,n 0.8811

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 22 ĴES-µ,−,n 20 22 23 22.89 23 26 0.81
J̌ES-µ,−,n 20 22 23 22.86 23 26 0.75

JES-ϑ,−,n = 121 ĴES-ϑ,−,n 91 106 110 109.8 113 131 5.35
J̌ES-ϑ,−,n 99 107 109 109.3 111 120 2.97

JES-µ,+,n = 16 ĴES-µ,+,n 14 15 16 15.66 16 18 0.54
J̌ES-µ,+,n 14 15 16 15.68 16 17 0.51

JES-ϑ,+,n = 111 ĴES-ϑ,+,n 78 94 97 97.45 101 116 4.68
J̌ES-ϑ,+,n 89 96 98 97.57 99 107 2.62

JQS-µ,−,n = 33 ĴQS-µ,−,n 27 32 33 33.45 35 41 1.69
J̌QS-µ,−,n 28 32 33 33.43 35 41 1.67

JQS-ϑ,−,n = 121 ĴQS-ϑ,−,n 97 107 109 109.4 111 121 3.33
J̌QS-ϑ,−,n 101 107 109 109.2 111 120 2.46

JQS-µ,+,n = 18 ĴQS-µ,+,n 13 15 16 15.93 17 22 1.21
J̌QS-µ,+,n 13 15 16 15.93 17 22 1.20

JQS-ϑ,+,n = 111 ĴQS-ϑ,+,n 88 95 97 97.35 99 108 2.82
J̌QS-ϑ,+,n 90 96 97 97.4 99 105 1.98

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-12: Simulations Results for Model 11

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

25 1.026 9 1.224 40 1.008 10 1.169
26 1.014 10 1.122 41 1.004 11 1.091
27 1.006 11 1.059 42 1.001 12 1.042
28 1.002 12 1.022 43 1.000 13 1.014
29 1.000 13 1.004 44 0.999 14 1.001
30 1.000 14 1.000 45 1.000 15 1.000
31 1.003 15 1.006 46 1.002 16 1.007
32 1.007 16 1.019 47 1.004 17 1.021
33 1.013 17 1.039 48 1.007 18 1.040
34 1.021 18 1.063 49 1.011 19 1.062
35 1.029 19 1.091 50 1.016 20 1.089

ĴES-µ,−,n 1.036 ĴES-µ,+,n 0.9962 ĴQS-µ,−,n 1.083 ĴQS-µ,+,n 0.9214
J̌ES-µ,−,n 1.041 J̌ES-µ,+,n 0.9944 J̌QS-µ,−,n 1.085 J̌QS-µ,+,n 0.9201

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 30 ĴES-µ,−,n 28 30 31 30.57 31 33 0.73
J̌ES-µ,−,n 29 30 30 30.49 31 32 0.63

JES-ϑ,−,n = 150 ĴES-ϑ,−,n 112 128 132 132 136 155 5.48
J̌ES-ϑ,−,n 119 129 131 130.9 133 144 3.28

JES-µ,+,n = 14 ĴES-µ,+,n 12 14 14 14.1 14 17 0.68
J̌ES-µ,+,n 12 14 14 14.12 14 16 0.63

JES-ϑ,+,n = 147 ĴES-ϑ,+,n 99 121 127 127 133 165 8.76
J̌ES-ϑ,+,n 108 124 127 127 130 148 5.06

JQS-µ,−,n = 45 ĴQS-µ,−,n 42 46 47 47.28 48 52 1.45
J̌QS-µ,−,n 42 46 47 47.22 48 52 1.42

JQS-ϑ,−,n = 153 ĴQS-ϑ,−,n 120 130 133 132.9 135 146 3.52
J̌QS-ϑ,−,n 123 130 132 132.3 134 143 2.72

JQS-µ,+,n = 15 ĴQS-µ,+,n 11 13 14 13.75 14 18 0.93
J̌QS-µ,+,n 11 13 14 13.75 14 18 0.92

JQS-ϑ,+,n = 144 ĴQS-ϑ,+,n 103 119 123 123.5 127 147 6.05
J̌QS-ϑ,+,n 106 120 123 123.7 127 144 4.64

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-13: Simulations Results for Model 12

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

15 1.061 16 1.075 24 1.024 21 1.034
16 1.030 17 1.043 25 1.012 22 1.018
17 1.011 18 1.021 26 1.004 23 1.007
18 1.001 19 1.008 27 1.000 24 1.001
19 0.998 20 1.001 28 0.999 25 0.999
20 1.000 21 1.000 29 1.000 26 1.000
21 1.007 22 1.003 30 1.003 27 1.004
22 1.017 23 1.010 31 1.009 28 1.010
23 1.031 24 1.020 32 1.016 29 1.018
24 1.047 25 1.033 33 1.025 30 1.028
25 1.066 26 1.047 34 1.034 31 1.040

ĴES-µ,−,n 1.014 ĴES-µ,+,n 0.9924 ĴQS-µ,−,n 1.097 ĴQS-µ,+,n 0.8544
J̌ES-µ,−,n 1.015 J̌ES-µ,+,n 0.9926 J̌QS-µ,−,n 1.098 J̌QS-µ,+,n 0.8545

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 20 ĴES-µ,−,n 17 19 19 19.48 20 23 0.86
J̌ES-µ,−,n 17 19 19 19.46 20 22 0.77

JES-ϑ,−,n = 157 ĴES-ϑ,−,n 108 136 143 143.3 150 189 10.43
J̌ES-ϑ,−,n 124 138 142 142.5 147 164 5.94

JES-µ,+,n = 21 ĴES-µ,+,n 19 20 21 20.81 21 22 0.54
J̌ES-µ,+,n 20 21 21 20.81 21 22 0.47

JES-ϑ,+,n = 134 ĴES-ϑ,+,n 94 108 111 111 114 130 4.85
J̌ES-ϑ,+,n 100 109 111 110.8 113 120 2.80

JQS-µ,−,n = 29 ĴQS-µ,−,n 25 30 31 30.67 32 37 1.77
J̌QS-µ,−,n 25 30 31 30.65 32 37 1.73

JQS-ϑ,−,n = 153 ĴQS-ϑ,−,n 118 135 140 139.9 144 169 7.19
J̌QS-ϑ,−,n 122 136 139 139.7 143 160 5.49

JQS-µ,+,n = 26 ĴQS-µ,+,n 18 21 22 21.8 23 29 1.68
J̌QS-µ,+,n 18 21 22 21.8 23 29 1.66

JQS-ϑ,+,n = 135 ĴQS-ϑ,+,n 103 111 113 113 115 125 2.90
J̌QS-ϑ,+,n 106 111 113 113 114 122 2.19

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-14: Simulations Results for Model 13

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

15 1.088 12 1.133 61 1.006 23 1.028
16 1.051 13 1.075 62 1.003 24 1.014
17 1.026 14 1.037 63 1.002 25 1.006
18 1.010 15 1.014 64 1.001 26 1.001
19 1.002 16 1.003 65 1.000 27 0.999
20 1.000 17 1.000 66 1.000 28 1.000
21 1.003 18 1.004 67 1.000 29 1.003
22 1.010 19 1.014 68 1.001 30 1.009
23 1.020 20 1.028 69 1.002 31 1.016
24 1.034 21 1.045 70 1.004 32 1.025
25 1.049 22 1.066 71 1.006 33 1.035

ĴES-µ,−,n 0.95 ĴES-µ,+,n 0.9652 ĴQS-µ,−,n 1.092 ĴQS-µ,+,n 0.8257
J̌ES-µ,−,n 0.9532 J̌ES-µ,+,n 0.9578 J̌QS-µ,−,n 1.093 J̌QS-µ,+,n 0.8247

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 20 ĴES-µ,−,n 15 19 19 19.4 20 24 1.02
J̌ES-µ,−,n 16 19 19 19.36 20 23 0.92

JES-ϑ,−,n = 104 ĴES-ϑ,−,n 55 97 106 104.8 113 143 11.59
J̌ES-ϑ,−,n 64 98 104 103.9 110 135 8.93

JES-µ,+,n = 17 ĴES-µ,+,n 13 16 17 16.84 17 21 1.00
J̌ES-µ,+,n 14 16 17 16.87 17 20 0.88

JES-ϑ,+,n = 96 ĴES-ϑ,+,n 46 88 96 94.64 102 126 10.72
J̌ES-ϑ,+,n 57 90 96 95.13 100 117 7.54

JQS-µ,−,n = 66 ĴQS-µ,−,n 49 68 72 72.34 77 104 6.56
J̌QS-µ,−,n 49 68 72 72.33 77 105 6.53

JQS-ϑ,−,n = 104 ĴQS-ϑ,−,n 93 102 104 103.8 106 118 3.22
J̌QS-ϑ,−,n 96 102 104 103.7 105 114 2.47

JQS-µ,+,n = 28 ĴQS-µ,+,n 13 19 22 22.89 25 51 4.86
J̌QS-µ,+,n 13 19 22 22.9 25 51 4.86

JQS-ϑ,+,n = 96 ĴQS-ϑ,+,n 85 92 93 93.37 95 103 2.67
J̌QS-ϑ,+,n 88 92 93 93.49 95 102 1.96

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-15: Simulations Results for Model 14

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

17 1.064 11 1.129 28 1.018 13 1.110
18 1.036 12 1.068 29 1.009 14 1.061
19 1.017 13 1.030 30 1.003 15 1.030
20 1.006 14 1.008 31 1.000 16 1.011
21 1.001 15 0.999 32 0.999 17 1.002
22 1.000 16 1.000 33 1.000 18 1.000
23 1.003 17 1.008 34 1.003 19 1.004
24 1.010 18 1.021 35 1.007 20 1.014
25 1.020 19 1.040 36 1.012 21 1.027
26 1.032 20 1.061 37 1.019 22 1.043
27 1.046 21 1.086 38 1.027 23 1.062

ĴES-µ,−,n 1.059 ĴES-µ,+,n 0.9816 ĴQS-µ,−,n 1.172 ĴQS-µ,+,n 0.8606
J̌ES-µ,−,n 1.061 J̌ES-µ,+,n 0.98 J̌QS-µ,−,n 1.173 J̌QS-µ,+,n 0.8602

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 22 ĴES-µ,−,n 20 23 23 23.06 24 26 0.86
J̌ES-µ,−,n 20 23 23 23.03 24 26 0.77

JES-ϑ,−,n = 121 ĴES-ϑ,−,n 77 105 109 109 113 131 6.57
J̌ES-ϑ,−,n 92 106 108 108.5 111 125 3.58

JES-µ,+,n = 16 ĴES-µ,+,n 14 15 15 15.43 16 17 0.59
J̌ES-µ,+,n 14 15 15 15.43 16 17 0.54

JES-ϑ,+,n = 111 ĴES-ϑ,+,n 75 95 99 98.67 102 119 5.67
J̌ES-ϑ,+,n 85 97 99 98.73 101 110 3.31

JQS-µ,−,n = 33 ĴQS-µ,−,n 30 36 37 37.42 39 45 1.94
J̌QS-µ,−,n 30 36 37 37.4 39 44 1.92

JQS-ϑ,−,n = 121 ĴQS-ϑ,−,n 97 106 109 108.8 111 121 3.57
J̌QS-ϑ,−,n 98 107 109 108.6 110 119 2.77

JQS-µ,+,n = 18 ĴQS-µ,+,n 13 15 15 15.56 16 21 1.14
J̌QS-µ,+,n 13 15 15 15.56 16 21 1.13

JQS-ϑ,+,n = 111 ĴQS-ϑ,+,n 88 96 98 98.56 101 111 3.05
J̌QS-ϑ,+,n 91 97 98 98.59 100 108 2.30

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-16: Simulations Results for Model 15

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

25 1.026 9 1.223 40 1.008 10 1.168
26 1.014 10 1.121 41 1.004 11 1.090
27 1.006 11 1.058 42 1.001 12 1.041
28 1.001 12 1.022 43 1.000 13 1.014
29 0.999 13 1.004 44 0.999 14 1.001
30 1.000 14 1.000 45 1.000 15 1.000
31 1.003 15 1.006 46 1.002 16 1.007
32 1.007 16 1.020 47 1.004 17 1.021
33 1.013 17 1.039 48 1.007 18 1.040
34 1.021 18 1.063 49 1.011 19 1.063
35 1.030 19 1.091 50 1.016 20 1.089

ĴES-µ,−,n 1.041 ĴES-µ,+,n 0.9839 ĴQS-µ,−,n 1.158 ĴQS-µ,+,n 0.9187
J̌ES-µ,−,n 1.046 J̌ES-µ,+,n 0.9816 J̌QS-µ,−,n 1.161 J̌QS-µ,+,n 0.9176

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 30 ĴES-µ,−,n 28 30 31 30.51 31 33 0.78
J̌ES-µ,−,n 28 30 30 30.42 31 33 0.67

JES-ϑ,−,n = 149 ĴES-ϑ,−,n 102 126 130 130 134 158 6.56
J̌ES-ϑ,−,n 111 127 129 129 132 141 3.77

JES-µ,+,n = 14 ĴES-µ,+,n 12 13 14 13.93 14 17 0.75
J̌ES-µ,+,n 12 14 14 13.94 14 16 0.68

JES-ϑ,+,n = 140 ĴES-ϑ,+,n 87 117 124 124.4 131 168 11.00
J̌ES-ϑ,+,n 101 119 124 124.3 129 155 6.83

JQS-µ,−,n = 45 ĴQS-µ,−,n 44 49 50 50.34 51 56 1.63
J̌QS-µ,−,n 44 49 50 50.28 51 56 1.59

JQS-ϑ,−,n = 151 ĴQS-ϑ,−,n 120 129 131 131.3 134 144 3.61
J̌QS-ϑ,−,n 120 129 131 130.8 133 142 2.84

JQS-µ,+,n = 15 ĴQS-µ,+,n 11 13 14 13.65 14 19 1.10
J̌QS-µ,+,n 11 13 14 13.66 14 19 1.11

JQS-ϑ,+,n = 137 ĴQS-ϑ,+,n 98 115 120 120.4 125 152 7.05
J̌QS-ϑ,+,n 103 116 120 120.5 124 143 5.95

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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Table SA-17: Simulations Results for Model 16

Panel A: IMSE for Grid of Number of Bins and Estimated Choices

J−,n
IMSEES,−(J−,n)

IMSE∗
ES,−

J+,n
IMSEES,+(J+,n)

IMSE∗
ES,+

J−,n
IMSEQS,−(J−,n)

IMSE∗
QS,−

J+,n
IMSEQS,+(J+,n)

IMSE∗
QS,+

15 1.059 16 1.073 24 1.023 21 1.033
16 1.030 17 1.042 25 1.011 22 1.017
17 1.011 18 1.021 26 1.004 23 1.007
18 1.001 19 1.007 27 1.000 24 1.001
19 0.998 20 1.001 28 0.999 25 0.999
20 1.000 21 1.000 29 1.000 26 1.000
21 1.007 22 1.003 30 1.004 27 1.004
22 1.018 23 1.010 31 1.009 28 1.010
23 1.031 24 1.021 32 1.016 29 1.019
24 1.048 25 1.033 33 1.025 30 1.029
25 1.066 26 1.048 34 1.035 31 1.041

ĴES-µ,−,n 1.048 ĴES-µ,+,n 0.9941 ĴQS-µ,−,n 1.071 ĴQS-µ,+,n 0.8365
J̌ES-µ,−,n 1.05 J̌ES-µ,+,n 0.9938 J̌QS-µ,−,n 1.072 J̌QS-µ,+,n 0.8365

Panel B: Summary Statistics for the Estimated Number of Bins

Pop. Par. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

JES-µ,−,n = 20 ĴES-µ,−,n 17 20 20 20.09 21 24 0.92
J̌ES-µ,−,n 17 20 20 20.05 21 23 0.80

JES-ϑ,−,n = 155 ĴES-ϑ,−,n 94 132 139 138.9 146 179 11.15
J̌ES-ϑ,−,n 116 134 138 138 142 164 6.18

JES-µ,+,n = 21 ĴES-µ,+,n 19 20 21 20.74 21 23 0.66
J̌ES-µ,+,n 19 20 21 20.74 21 23 0.58

JES-ϑ,+,n = 134 ĴES-ϑ,+,n 85 108 112 112 116 132 6.23
J̌ES-ϑ,+,n 98 109 112 111.9 114.2 127 4.09

JQS-µ,−,n = 29 ĴQS-µ,−,n 24 29 30 30.13 31 37 1.73
J̌QS-µ,−,n 24 29 30 30.11 31 37 1.70

JQS-ϑ,−,n = 151 ĴQS-ϑ,−,n 113 132 136 136.6 141 163 7.10
J̌QS-ϑ,−,n 117 132 136 136.3 140 161 5.74

JQS-µ,+,n = 26 ĴQS-µ,+,n 17 20 21 21.08 22 28 1.42
J̌QS-µ,+,n 17 20 21 21.07 22 28 1.41

JQS-ϑ,+,n = 136 ĴQS-ϑ,+,n 102 111 113 113 115 125 3.35
J̌QS-ϑ,+,n 104 111 113 113 115 125 2.74

Notes:

(i) Population quantities:
JES-µ,·,n = IMSE-optimal partition size for ES RD Plot.
JES-ϑ,·,n = Mimicking variance partition size for ES RD Plot.
JQS-µ,·,n = IMSE-optimal partition size for QS RD Plot.
JQS-ϑ,·,n = Mimicking variance partition size for QS RD Plot.
IMSE∗ES,· = IMSEES,·(JES-µ,·,n) = ES IMSE function evaluated at optimal choice.
IMSE∗QS,· = IMSEQS,·(JQS-µ,·,n) = QS IMSE function evaluated at optimal choice.

(ii) Estimators:
ĴES-µ,·,n = spacings estimator of JES-µ,·,n; J̌ES-µ,·,n = polynomial estimator of JES-µ,·,n.
ĴES-ϑ,·,n = spacings estimator of JES-ϑ,·,n; J̌ES-ϑ,·,n = polynomial estimator of JES-ϑ,·,n.
ĴQS-µ,·,n = spacings estimator of JQS-µ,·,n; J̌QS-µ,·,n = polynomial estimator of JQS-µ,·,n.
ĴQS-ϑ,·,n = spacings estimator of JQS-ϑ,·,n; J̌QS-ϑ,·,n = polynomial estimator of JQS-ϑ,·,n.
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6 Numerical Comparison of Partitioning Schemes

We proposed two alternative ways of constructing RD plots, one employing ES partitioning and the

other employing QS partitioning. While developing a general theory for optimal partitioning scheme

selection is beyond the scope of this paper, we can employ our IMSE expansions to compare the

two partitioning schemes theoretically in order to assess their relative IMSE-optimality properties.

Without loss of generality we focus on the IMSE for the treatment group (“+” subindex).

Assuming the regularity conditions imposed in the paper hold, we obtain (up to the ceiling operator

for selecting the optimal partition sizes):

IMSEES,+(JES,+,n) =
3
√

3

4
CES,+n

−2/3{1 + oP(1)},

IMSEQS,+(JQS,+,n) =
3
√

3

4
CQS,+n

−2/3{1 + oP(1)},

where

CES,+ =

(∫ xu

x̄

(
µ

(1)
+ (x)

)2
w(x)dx

)1/3(∫ xu

x̄

σ2
+(x)

f(x)
w(x)dx

)2/3

,

CQS,+ =

∫ xu

x̄

(
µ

(1)
+ (x)

f(x)

)2

w(x)dx

1/3(∫ xu

x̄
σ2

+(x)w(x)dx

)2/3

.

Thus, in order to compare the performance of the partition-size selectors for ES and QS RD plots

we need to compare the two DGP constants CES,+ and CQS,+. It follows that when f(x) ∝ κ (i.e.,

the running variable is uniformly distributed), then CES,+ = CQS,+ and therefore both partitioning

schemes have equal (asymptotic) IMSE when the corresponding optimal partition size is used.

Unfortunately, when the density f(x) is not constant on the support [xl, xu], it is not possible to

obtain a unique ranking between IMSEES,+(JES,+,n) and IMSEQS,+(JQS,+,n). Heuristically, the QS

RD plots should perform better in cases where the data is sparse because the estimated quantile

spaced partition should adapt to this situation better, but we have been unable to provide a formal

ranking along these lines.

Nonetheless, in Table SA-18 we explore the ranking between the two partitioning schemes using

the 16 data generating processes discussed in our simulation study (Table SA-1). As expected, this
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Table SA-18: Comparison of Partitioning Schemes

BES,−
BQS,−

VES,−
VQS,−

IMSEES,−(JES-µ,−,n)
IMSEQS,−(JQS-µ,−,n)

BES,+

BQS,+

VES,+

VQS,+

IMSEES,+(JES-µ,+,n)
IMSEQS,+(JQS-µ,+,n)

Model 1 1.000 1.000 1.000 1.000 1.000 1.000

Model 2 2.290 1.000 1.319 0.784 1.000 0.925

Model 3 2.466 1.389 1.682 1.038 1.004 1.016

Model 4 1.258 1.004 1.084 0.447 1.389 0.953

Model 5 2.466 1.000 1.352 1.038 1.000 1.004

Model 6 1.258 1.000 1.081 0.447 1.000 0.765

Model 7 2.466 1.389 1.682 1.038 1.004 1.016

Model 8 1.258 1.004 1.084 0.447 1.389 0.953

Model 9 0.028 1.000 0.303 0.241 1.000 0.624

Model 10 0.309 1.000 0.677 0.655 1.000 0.867

Model 11 0.301 1.015 0.677 0.831 0.977 0.928

Model 12 0.309 0.977 0.666 0.570 1.015 0.839

Model 13 0.028 1.000 0.303 0.241 1.000 0.624

Model 14 0.309 1.000 0.677 0.655 1.000 0.867

Model 15 0.301 1.015 0.677 0.831 0.977 0.928

Model 16 0.309 0.977 0.666 0.570 1.015 0.839

table shows that when f(x) is uniform both IMSE are equal, while when f(x) is not uniform either

IMSE may dominate the other. This depends on the shape of the regression function (different

for control and treatment sides) and conditional heteroskedasticity in the underlying true data

generating process.
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