REGRESSION DISCONTINUITY DESIGNS USING COVARIATES

Sebastian Calonico, Matias D. Cattaneo, Max H. Farrell, and Rocio Titiunik*

Abstract—We study regression discontinuity designs when covariates are
included in the estimation. We examine local polynomial estimators that
include discrete or continuous covariates in an additive separable way, but
without imposing any parametric restrictions on the underlying population
regression functions. We recommend a covariate-adjustment approach that
retains consistency under intuitive conditions and characterize the potential
for estimation and inference improvements. We also present new covariate-
adjusted mean-squared error expansions and robust bias-corrected inference
procedures, with heteroskedasticity-consistent and cluster-robust standard
errors. We provide an empirical illustration and an extensive simulation
study. All methods are implemented in R and Stata software packages.

I. Introduction

HE regression discontinuity (RD) design is widely used
in economics, political science, and many other social,
behavioral, biomedical, and statistical sciences. Within the
causal inference framework, the RD design is considered to
be one of the most credible nonexperimental strategies be-
cause it relies on weak and easy-to-interpret nonparametric
identifying assumptions, which permit flexible and robust
estimation and inference for local treatment effects. The key
feature of the design is the existence of a score, index, or run-
ning variable for each unit in the sample, which determines
treatment assignment via hard-thresholding: all units whose
score is above a known cutoff are offered treatment, while
all units whose score is below this cutoff are not. Identifi-
cation, estimation, and inference proceed by comparing the
responses of units near the cutoff, taking those below (com-
parison group) as counterfactuals to those above (treatment
group). For literature reviews and practical introductions, see
Imbens & Lemieux, 2008; Lee & Lemieux, 2010; Cattaneo
& Escanciano, 2017; Cattaneo, Titiunik, & Vazquez-Bare,
2017; and Cattaneo, Idrobo, & Titiunik, forthcoming.
Nonparametric identification of the RD treatment effect
typically relies on continuity assumptions, which motivate
nonparametric local polynomial methods tailored to flexi-
bly approximate, above and below the cutoff, the unknown
conditional mean function of the outcome variable given the
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score. In practice, researchers often choose a local linear
polynomial and perform estimation using weighted linear
least squares, giving higher weights to observations close to
the cutoff. These estimates are then used to assess whether
there is a discontinuity in levels, derivatives, or ratios thereof,
at the cutoff. If present, this discontinuity is interpreted
as some average response to the treatment (assignment) at
the cutoff, depending on the setting and assumptions under
consideration.

When practitioners employ weighted least squares to
estimate RD effects, they often augment their estimation
models with additional predetermined covariates such as de-
mographic or socioeconomic characteristics of the units. De-
spite the pervasiveness of this practice, there has been little
formal study of the consequences of covariate adjustment for
identification, estimation, and inference of RD effects under
standard smoothness conditions and when employing stan-
dard nonparametric local polynomial estimators (e.g., local
linear regression). This has led to the proliferation of ad hoc
covariate-adjustment practices that at best reduce the trans-
parency of the estimation and at worst result in generally
incomparable, or even inconsistent, estimators. We provide
results that formalize and justify covariate adjustment in lo-
cal polynomial analysis of RD designs, offering valid and
practical estimation and inference procedures.

We augment the standard local polynomial regression to
allow covariate adjustment in an additive separable, linear-in-
parameters way, following very closely the estimation mod-
els typically employed by applied researchers. Our approach
allows for the inclusion of continuous, discrete, and mixed re-
gressors and does not require additional smoothing methods
such as choosing other bandwidths or kernels, or parametric
functional form assumptions. Importantly, although we con-
sider estimation models where the covariates enter linearly
(in parameters), this is purely a local linear projection and
is in no way an assumption about the functional form of the
underlying regression functions. In other words, we study the
limiting behavior of local linear least squares estimators of
regression functions in a fully nonparametric sense. Within
this framework, there does not appear to be broad consensus
in applied work as to how exactly the covariates should en-
ter the model. We characterize not only the conditions under
which the inclusion of covariates is appropriate, but also the
ways in which adjusting by covariates may lead to incon-
sistent or poorly behaved RD estimators. Thus, our formal
results offer concrete guidelines for applied researchers who
want to employ covariate-adjusted local regression methods
that were previously unavailable.

We advocate the use of a simple covariate-adjusted RD es-
timator that imposes the same adjustment above and below
the cutoff. This estimator is easy to implement and is con-
sistent for the standard RD treatment effect under the mild,
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intuitive condition that the treatment has no mean effect on the
covariates at the cutoff. For example, in the sharp RD design,
the only requirement is that the covariates have equal con-
ditional expectation limits from above and below the cutoff,
which is often conceived and presented as a falsification or
“placebo” test in RD empirical studies (Lee, 2008). For kink
RD designs, we show that additional conditions on the co-
variates are needed, suggesting new specification tests for
empirical work (all details are provided in the supplemen-
tal appendix). The requirement of “balanced” covariates at
the cutoff is the most natural and practically relevant suffi-
cient condition. We also show that employing other covariate-
adjusted estimators may lead to inconsistency or invalid
inference, or both.

We offer a complete large sample analysis of our rec-
ommended covariate-adjusted RD estimator, including novel
mean squared error (MSE) expansions, MSE-optimal band-
widths (with consistent data-driven implementations), MSE-
optimal point estimators, and valid asymptotic inference, cov-
ering all empirically relevant RD designs (sharp RD, kink
RD, fuzzy RD, and fuzzy kink RD), with both heteroskedas-
tic and clustered data. We characterize precisely the potential
for efficiency gains, which are guaranteed when the best lin-
ear effect of the additional covariates on the outcome, at the
cutoff, is equal for both control and treatment groups. These
results have immediate practical use in any RD analysis and
aid in interpreting prior results. We illustrate our methods nu-
merically by revisiting the data of Ludwig and Miller (2007)
to reanalyze the effect of Head Start on child mortality and
with an extensive simulation study. We also provide Stata
and R packages that implement our methods (Calonico et al.,
2017).

Our framework for covariate adjustment is best suited for
settings where the inclusion of covariates is intended to in-
crease the precision of the RD treatment effect estimator,
in the same spirit as (preintervention) covariates are often
included in the analysis of randomized experiments. We re-
quire that the treatment have no effect on the covariates at
the cutoff, and that the conditional expectations of potential
outcomes and covariates given the score be continuous at the
cutoff. We impose no restrictions on the “long” conditional
expectation of potential outcomes given the score and the
covariates. These conditions are in perfect agreement with
nonparametric identification results in the RD literature and
with standard regression adjustment arguments in the context
of randomized experiments.

An alternative motivation for the inclusion of covariates
in RD analysis is to increase the plausibility of the design
in cases where researchers fear that the potential outcomes
are discontinuous at the cutoff; in these cases, the inclusion
of covariates is intended to restore identification of some
RD parameter. This second motivation generally requires ei-
ther parametric assumptions on the regression functions to
enable extrapolation or other design assumptions that rede-
fine the parameter of interest in a fixed local neighborhood
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rather than at the cutoff point. In this context, our estimation
and inference results can continue to be used under stronger
assumptions. For example, if the covariate specification in
the “long” regression functions is assumed correct within a
neighborhood around the cutoff, covariate adjustment leads
to identification, estimation, and inference of the correspond-
ing RD treatment effect, as it occurs in standard parametric
linear regression settings. However, our main goal here is on
nonparametric identification, estimation, and inference of the
canonical RD parameter at the cutoff, which is assumed to be
well defined from the start. We plan to investigate covariate
adjustment for identification of other RD treatment effects in
future work.

Our paper contributes to the large and still rapidly expand-
ing methodological literature on RD designs; we stay away
from summarizing this literature due to space constraints and
refer readers to the references cited in our opening paragraph.
From the specific perspective of covariate adjustment, our pa-
per is related to two strands of the literature. First, a portion
of the RD literature reinterprets the data as being “as good
as randomized” within a small window around the cutoff,
though this requires stronger conditions than just continuity
or smoothness of conditional expectations as we maintain
here (Lee, 2008; Cattaneo, Frandsen, & Titiunik, 2015; Cat-
taneo, Titiunik, & Vazquez-Bare, 2017; Sekhon & Titiunik,
2017). Adopting a local randomization perspective, our work
is related in obvious ways to the large literature on covariate
adjustment in randomized experiments (e.g., Imbens & Ru-
bin, 2015) and shows two interesting connections. On the one
hand, we find that the conditions under which adjusting for
pretreatment covariates can lead to efficiency gains parallel
to those required in classical experiments (see section IVB),
although we also find that some approaches have inferior
estimation and inference properties because of the intrinsic
smoothing in RD methods (lemma 1), which is absent in ex-
perimental methods. On the other hand, it follows from our
results that adjusting for imbalanced covariates in order to
restore identification is not possible without functional form
assumptions, just as in randomized experiments it is not gen-
erally possible to remove imbalances by simply adjusting for
the covariates that are correlated with treatment.

Second, Frolich and Huber (2018) develop a nonparamet-
ric kernel method to account for observed covariates for
RD treatment effect estimation. This localize-then-smooth
method of adding covariates to RD designs involves non-
parametric estimation over both the running variable and
the covariates, and thus requires d + 2 bandwidth choices
(where d denotes the dimension of the additional covariates
included). Their estimator recovers a weighted average of
local treatment effects, which coincides with the standard
RD treatment effect of interest under further balance-type
conditions on the covariates. In contrast, our methods do
not require any smoothness assumptions on, or nonparamet-
ric smoothing over, the “long” conditional expectation de-
pending on the d additional covariates, and are in perfect
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agreement with empirical practice (i.e., local regression
methods adding covariates linearly and employing only lin-
ear projection arguments). Furthermore, we provide optimal
bandwidth selectors and robust bias-corrected inference with
valid variance estimators under both heteroskedasticity and
clustering and also cover kink RD designs in addition to sharp
and fuzzy designs.

The rest of the paper is organized as follows. Section
IT introduces the framework, sections III and IV summa-
rize our main methodological results, section V briefly dis-
cusses numerical results, and section VI concludes. Due to
space limitations, we discuss only local linear estimation in
sharp RD designs, but in the supplemental appendix we ex-
tend our results to fuzzy and kink RD designs for any local
polynomial order, in addition to reporting several other re-
sults of interest. Companion software, replication files, and
other materials can be found at https://sites.google.com/site
/rdpackages/.

II. Sharp RD Designs Using Covariates

The observed data are assumed to be a random sample
Y, T, X, Z)),i=1,2,...,n. The key feature of any RD
design is the presence of a continuous score or running vari-
able X;, with known threshold x, which determines treatment
assignment for each unit in the sample. For simplicity, here
we discuss only sharp RD designs, where all units with X; > ¥
are assigned to the treatment group and receive the treatment,
and all units with X; < X are assigned to the control group and
do not receive the treatment. We also normalize ¥ = 0 to save
notation. All other cases are discussed in the supplemental
appendix.

We use the potential outcomes framework. The ob-
served outcome is Y; = Y;(0)- (1 — T;) + Y;(1) - T;, where
T; = 1(X; > x) denotes treatment status and Y;(1) and Y;(0)
are the potential outcomes with and without treatment, re-
spectively, for each unit i in the sample. The parameter of
interest is the average treatment effect at the cutoft:

= E[Yi(1) - Y;(0)1X; = 0].

Evaluation points of functions are dropped whenever possi-
ble throughout the paper. Hahn, Todd, and van der Klaauw
(2001) give precise, easy-to-interpret conditions for nonpara-
metric identification of the standard RD treatment effect T,
without additional covariates. The key substantive identifying
assumption is that E[Y;(¢)|X; = x], ¢t € {0, 1}, are continuous
at the cutoff x = 0.

The new feature studied in this paper is the presence of
additional covariates, collected in the random vector Z; €
R, which could be continuous, discrete, or mixed. We set
7, =7,0)-(1—-T)+Z;(1)-T;, where Z;(1) and Z;(0) de-
note the potential covariates on either side of the threshold.
In practice, it is natural to assume that some features of the
marginal distributions of Z;(1) and Z;(0) are equal near the
cutoff or, more generally, that Z;(1) =, Z;(0), which is im-
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plied by the definition of a “pretreatment” or “predetermined”
covariate in the causal inference literature.

A large portion of the literature on estimation and infer-
ence in RD designs focuses on local polynomial estimators.
In practice, researchers first choose a neighborhood around
the cutoff, usually via a bandwidth choice £, and then conduct
local linear polynomial inference; that is, they rely on linear
regression fits using only units whose scores X; lie within
that preselected neighborhood, with the weighting scheme
determined by the choice of kernel function K(-). The role
of the kernel and bandwidth is to localize the regression
fit near the cutoff. The most popular choices are the uni-
form kernel (equally weighting observations X; € [—h, h])
and the triangular kernel (linearly downweighting observa-
tions X; € [—h, h]). To be specific, the standard local lin-
ear RD treatment effect estimator T is obtained by running
the weighted least squares regression of ¥; on a constant, T;,
X;, and X;T; using only units with X; € [—h, h] and applying
weights K (X;/h), which in this paper we denote by

2 P=a+Tr+XP_ + TXP.y. (1)

We give a precise definition of T and all other estimators in
the supplemental appendix. The estimator 7 is, of course, nu-
merically equivalent to the difference in intercepts that would
be obtained from two separate weighted least squares regres-
sions using observations on each side of the cutoff (with the
same kernel and bandwidth). We set the problem as a single
joint least squares linear regression fit to ease the upcom-
ing comparisons with covariate-adjusted RD estimators. We
maintain the local linear specification for simplicity, but as
we show in the supplemental appendix, all our results apply
to any pth-order local polynomial fit.

While the standard estimator 1 is popular in empirical
work, it is common to augment the specification with the
additional covariates Z;. In practice, these covariates can
be included in many different ways. We consider five lin-
ear covariate-adjustment specifications, some with centered
covariates, to mimic the variety of current empirical practice:

T Li=a+Ti+Xp +TXP, +Z)9, 2)

T h=a4 TR XE + X + (1 - TZY-

+TZ,, 3)
i Y=ot T+ Xpo+ T+ (Z - D)y,
T Yi=d+ LT+ XB + TXby

+(1—T)Zi —L)y_+T(Zi — L)'y,
(5)
T Y, =0+ TT+Xp_ +TXB,
+(0=T)Zi—2_)y_ +T(Zi—Z1,) ¥,
(6)
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where all these weighted least squares regressions are com-
puted only for observations with X; € [—h, h] and weights
K(X;/h), and Z, Z_, and Z_ correspond, respectively, to
the sample averages of Z; for X; € [—h, h], X; € [—h, 0), and
X; €10, h].

Our recommended approach is T in equation (2), which
we call the covariate-adjusted RD estimator. This estima-
tor broadly captures the common empirical practice of first
choosing a neighborhood around the cutoff and then conduct-
ing local linear least squares estimation and inference with
covariates. We formalize two important points regarding the
way that the additional covariates Z; are used in the local
least squares fit: (a) additive separability between the run-
ning variable and the covariates and (b) linear-in-parameters
specification for the covariates. We avoid full nonparamet-
ric estimation over (X;, Z})' € R+, which would introduce
d additional bandwidths and kernels, quickly leading to a
curse of dimensionality and hence rendering empirical appli-
cation infeasible. Furthermore, in practice, Z; could include
power expansions, interactions, and other “flexible” trans-
formations of the original covariates. This approach to RD
covariate adjustment allows for any type of additional regres-
sors, including fixed effects or other discrete variables.

As discussed above, we focus on the common motivation
for covariate adjustment based on improving the precision of
the estimator of the RD treatment effect, t, analogous to the
standard justification for covariate adjustment in randomized
experiments. We build on this intuition and make precise the
conditions required for consistency of the covariate-adjusted
RD estimator T for t. We also show that much more strin-
gent conditions are required if the estimation model includes
treatment-covariate interactions or centering, or both.

A. Notation and Regularity Conditions

The following assumption defines notation and collects the
conditions required for sharp RD designs.

Assumption SRD. For r € {0, 1} and all x € [x;, x,], where
X7, X, € Rsuchthat x; < X < x,:

a. The Lebesgue density of X;, denoted f(x), is continuous
and bounded away from zero.

b. py-(x) = E[Y;(0)|X; = x] and py(x) = E[Y;(DX;
= x] are thrice continuously differentiable.
c. nz_(x) = E[Z/(0)|X; = x] and pz, (x) = E[Z;(1)|X;

= x] are thrice continuously differentiable, and
E[Z;(t)Y;(¢)|X; = x] is continuously differentiable.

d. V[(Y;(t), Z;(t))|X; = x] is continuously differentiable
and invertible.

e. E[|(Y:(t), Z;(t))|*|1X; = x], is continuous, where | - |
denotes the Euclidean norm.

Assumption SRD imposes standard continuity or smooth-
ness assumptions common to all nonparametric analyses of
RD designs (parts a and b), plus a mild assumption to allow
for the inclusion of additional covariates (part c¢). Parts d and
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e are standard restrictions on the conditional variances and
higher moments. Indeed, if one simply ignores all statements
involving the additional covariates, the conditions are exactly
those found in the RD literature for local linear regression (the
supplemental appendix shows the version for polynomial fits
of degree p > 1).

The assumptions are placed only on features such as the
mean and variance of the conditional distributions given the
running variable X; alone. Importantly, assumption SRD does
not restrict in any way the long conditional expectations
E[Y;(1)|X;, Z;(t)], t € {0, 1}, which implies that our methods
allow for discrete, continuous, and mixed additional covari-
ates and do not require any semiparametric or parametric
modeling of this regression function. That is, we allow for
complete misspecification of E[Y;(¢)|X;, Z;(¢)] in any finite
sample, and hence give a best linear approximation or local
linear projection interpretation to the RD estimators in equa-
tions (2) to (6). In other words, the linearity in these spec-
ifications represents the empirical use of the covariates and
does not impose parametric assumptions on the underlying
regression functions.

III. Estimation in Sharp RD Designs Using Covariates

We now present the first main result of the paper, which
constructs and gives an interpretation to the implicit esti-
mands associated with the covariate-adjusted RD estimators.
All limits are taken as n — o0, unless otherwise noted.

Lemma 1 (Sharp RD with covariates). Let assumption SRD
hold, and assume the weights obey K (u) = 1(u < 0)k(—u) +
T(u > 0)k(u), withk(-) : [0, 1] = R bounded, zero outside
its support, and positive and continuous on (0,1). If nh — 00
and h — 0, then

T—p T— [l’«z+ ] Yy,

Top 1= (R vy — W vy ],

T—p T— [y — ]/YYa

Top T— [(zy — B2)Vyy — (7o — B2) Yy ],

T—>pT,

where yy = (65_ + 0, ) '"E[(Zi(0) — nz_(X)) Y;(0) +
(Zi(1) = pz (X)) Yi(DIXi =X, pzo =nz (X), yy_ =
(07 ) "ENZi(0) — nz_ (X)) Yi(0)|X; =X, 0, = V[Z;(0)|
X; = x|, and similarly for wz,, yy, and 6%+, and Lz =
Rz /2 +wnz /2.

It is well known that under the same conditions imposed
here, T— pt. The conclusion of this lemma gives a precise
description of the probability limit of each covariate-adjusted
sharp RD estimator in equations (2) to (6). Similar results for
other RD designs are shown in the supplemental appendix.

Lemma 1 shows that our recommended covariate-adjusted
RD estimator, T, is consistent for the standard RD treatment
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effect at the cutoff, T = py, — py—, plus an additional term
that depends on the RD treatment effect on the covariates,
Tz := Mz, — Mz_. It follows that a sufficient condition for
T—ptis that py, = p_, that is, that there is no RD treat-
ment effect on the covariates. This is weaker than assuming
that the marginal distributions of Z;(0) and Z;(1) are equal
near the cutoff, which is the usual definition of predetermined
covariates in randomized experiments.

Further, lemma 1 shows that the treatment-interacted,
covariate-adjusted RD estimator ¥, which corresponds to fit-
ting two separate weighted linear regressions on each side of
the cutoff, is consistent for t under stronger conditions than
T. The difference arises because including this interaction al-
lows y_ # y, in the estimation, whereas our recommended
covariate-adjusted RD estimator, ¥, forces equality. The ad-
ditional term, [W},yy, — W,_Yy_], can be interpreted as
the difference of the best linear approximations at the cutoff
of the unknown conditional expectations E[Y;(#)|X;, Z;(?)],
t € {0, 1}, based on the additional covariates included in the
RD estimation. It follows that a necessary and sufficient con-
dition for T—pt is that w,, yy, = n,_yy_. However, this
is harder to justify in practice than the condition required
for the model without the interaction, since we must assume
Yy, = Yy_ in addition to i, = p,_ (“covariate balance”)
above. From a linear least squares regression perspective, the
discrepancy between the probability limits of T and t can be
explained as a misinterpretation of the interaction term in the
estimation model.

Finally, the last three results in lemma 1 study different de-
meaning approaches motivated by the literature on covariate
adjustment in randomized experiments and by classical least
squares regression with interactions. As a result of the de-
meaning of covariates, the probability limit of the estimators
changes: T (common demeaning) behaves like T, T (common
demeaning, treatment interaction) has a new probability limit
involving a recentering, and T (group demeaning, treatment
interaction) behaves like 1. For the former two, the same con-
dition, p,, = p,_, is sufficient for consistency; T does not
require this condition because the demeaned covariates are
essentially orthogonal to treatment status. These require-
ments and conclusions are conceptually similar to zero-
correlation assumptions in standard least squares algebra.
Despite these similarities, the nonparametric nature of the
problem introduces important differences with standard least
squares: formal derivations require nonparametric large-
sample approximations (otherwise, misspecification biases
appear for fixed n), and inference results do not follow from
standard parametric least squares arguments.

An important drawback of all three demeaning-based es-
timators (T, T, T) is that they employ some form of local av-
erage of the covariates (Z, Z_, Z.), which is equivalent to a
kernel regression estimator with a uniform kernel. Therefore,
inference using the resulting demeaned estimators is severely
affected: these estimators exhibit slower convergence rates,
new misspecification biases, and additional asymptotic vari-
ability when compared to T (or even t). Thus, in these cases,
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the analogy with classical least squares regression breaks
down. Furthermore, as shown in the supplemental appendix,
simple demeaning does not work for other RD designs.

Putting the above together and from a practical perspec-
tive, not only does lemma 1 give general, precise, and intu-
itive characterizations of the probability limits of the vari-
ous covariate-adjusted RD estimators; it also has interesting
implications for the analysis and interpretation of RD de-
signs using covariates. Most notable, the lemma shows the
conditions under which a covariate-adjusted RD estimator is
consistent for the standard (causal) RD treatment effect of
interest, T, and, by implication, establishes when estimators
with and without covariate adjustment are valid (for estimat-
ing 1) and can be compared. We conclude that for estimating
T, T requires the weakest assumption, L, = p_, while at
the same time it is not affected by the poor behavior of de-
meaning. We therefore advocate this estimator for use in ap-
plications, and the rest of the paper gives a thorough analysis
of its large sample properties and empirical performance.

In the supplemental appendix, we extend the results to
other RD designs, where we show that a new condition for
covariate balance emerges for kink RD designs; the addi-
tional requirement is that u(zl}r = u(zll where u(zll and u(le
denote the first derivative of the conditional expectations
of the covariates at the cutoff for treatment and control,
respectively.

IV. Inference in Sharp RD Designs Using Covariates

Estimation and inference in RD designs using local poly-
nomial methods without covariates (i.e., using only ¥; and
X;) has been studied in great detail in recent years (refer-
ences are given in section I). In this section, we study the
large sample properties of the covariate-adjusted RD estima-
tor T(h) = T, now making the dependence on & explicit, and
assuming throughout that p,, = W_ in order to maintain
the same standard RD treatment effect of interest (lemma 1).
We present new MSE expansions, several data-driven opti-
mal bandwidth selectors, valid distributional approximations
based on bias-correction techniques, and consistent standard
errors for T(h). Analogous results for other RD designs and
clustered data are given in the supplemental appendix.

We rely on the following representation (valid for each n):
T(h) = t(h) — 27(h)'yy (h), where T(h) = T and y, (h) = Yy
are given in equations (1) and (2), respectively, and Tz(h)
is a d-dimensional vector containing the standard RD treat-
ment effect estimators for each covariate. In other words,
each element of Tz(h) is constructed using the correspond-
ing covariate as outcome variable in equation (1). Using this
partial-out representation, it follows that

2(h) — r]_ ,[f(h)— T

f(h)”zs(h)/[ wm |75 2

]{1 + op(1)}

where s(h) = (1, yy(h)) and s = (1,y}), and because
s(h)—p s using the results underlying lemma 1 (and using
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Rz, = Wz_, so that Ttz = 0). The asymptotic analysis pro-
ceeds by studying the (joint) large-sample properties of
the vector s(h) := (T(h), Tz(h)") and then taking the
linear combination s(k) or s, as appropriate. Note that
ts(h)—pts := (1, T,) under the conditions in lemma 1. We
give exact details in the supplemental appendix.

A.  MSE Expansion and Data-Driven Bandwidth Selection

We first establish a valid asymptotic MSE-type expan-
sion for the covariate-adjusted RD estimator, based on the
representation already given, which is useful to develop
optimal bandwidth choices and optimal point estimators.
Further, the bias expressions will be used to develop in-
ference procedures based on robust bias correction. The
object we study is defined as MSE[T(h)] = E[(s'ts(h)
— s'15)?|X] = (Bias[(h)])> + Var[t(h)], where X = [X],
X5, ..., X,], Bias[i(h)] := E[s't5(h) — s't5|X], and
Var[t(h)] := V[s'ts(h)|X].

Theorem 1 (MSE expansion). Let the conditions of lemma
1 hold. Then

MSE[2(h)] = h*Be(h)* {1 + op (1)) + %wm,

where the precise expressions for all bias and variance terms
are given in the supplemental appendix.

The bias and variance expressions in theorem 1 are differ-
ent from those available in the literature (Imbens & Kalya-
naraman, 2012; Calonico, Cattaneo, & Titiunik, 2014; Arai &
Ichimura, 2018) due to the presence of the covariates Z;. As
a consequence, MSE-optimal bandwidth selection and point
estimators are different when covariate adjustment is em-
ployed. Bias-correction techniques and standard error con-
structions are also different, as discussed below.

The leading bias and variance formulas in theorem 1 are
derived in preasymptotic form. For the bias, the random
term B;(h) gives a preasymptotic stochastic approximation
to the conditional bias of the linearized estimator (hence
the presence of the op (1) term), whereas the variance term
Vz(h) is simply obtained by a conditional-on-X calculation
for the linearized estimator. Calonico, Cattaneo, and Far-
rell (2018) prove, using valid Edgeworth expansions, that
employing preasymptotic approximations when conducting
asymptotic inference in nonparametrics can lead to superior
performance. Furthermore, fewer unknown features must be
characterized and estimated.

The main constants in theorem 1 have a familiar form:
the bias and variance are, respectively, Bz(h) = Bz (h) —
B:_(h) and V:(h) = Vi_(h) + Vi, (h), where each compo-
nent stems from estimating the unknown regression function
on one side of the cutoff. The bias is entirely due to estimat-
ing the unknown functions py_(-) and p,_(+) for the control
group and py4(-) and w2, (-) for the treatment group. When
the covariates are not included, these constants reduce exactly
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to those already available in the literature. In the supplemen-
tal appendix, we also give the limiting version of the bias
and variance constants; that is, we characterize the fixed, real
scalars B; and V; that satisfy (Bz(h), Vzi(h)) —p (Bz, Vi).

Assuming that B; # 0, the MSE-optimal bandwidth
choice for the local linear covariate-adjusted RD estimator
T(h)is

Ve/n]! /5
=[]

This choice can be used to construct a consistent and

MSE-optimal covariate-adjusted sharp RD point estimator,

T(hz)—pT, provided that t; = 0. The convergence rate is not

affected by d = dim(Z;) because no nonparametric smooth-

ing is done on the additional covariates.

To construct feasible MSE-optimal bandwidth choices, we
proceed in the familiar way. For pilot bandwidths » — 0 and
17{~(1))/n
4Bz (b)?
forms of the bias estimator, B:(b), and variance estimator,
V:(v), are given in the supplemental appendix (we also show
results for a generic degree p > 1, where the optimal band-
width decays as n~ /2P Heuristically, these estimators
are formed as plug-in versions of the preasymptotic formu-
las obtained in theorem 1. In the supplemental appendix, we
show that these feasible versions of the optimal bandwidths
are consistent for their infeasible analogs, bz /h:—p1.

Finally, in the supplemental appendix, we also discuss
other MSE-optimal bandwidth selectors, including (a) sepa-
rate MSE optimizations on either side of the cutoff, (b) the
MSE for the sum rather than the difference of the one-sided
estimators, and (c) several regularized versions of the plug-
in bandwidth selectors. In all cases, the decay rate of these
bandwidths matches the MSE-optimal choice, but the exact
leading constants differ, and these choices may be more sta-
ble in finite samples or more robust to situations where the
smoothing bias may be small.

_ 1/5
v — 0, we can implement bz = [ ] , where the exact

B.  Asymptotic Efficiency

In addition to finite-sample efficiency considerations,
which are well known from the literature on linear least
squares, we can give a precise characterization of the effect
of introducing covariates in RD estimation on asymptotic ef-
ficiency. Using explicit results proven in the supplemental
appendix, we can compare the asymptotic variance of the
covariate-adjusted estimator %, denoted by V%, to that of the
standard RD estimator T, denoted by V;. This comparison
reduces to studying

VIYi(0) — Z:(0)yy |X; = ]
:  + VYD) — Zi(1)yy X = ]
— VIY(0)[X; = %]+ VIY(DIX; = &

he

=
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where yy is given in lemma 1. In general, a definitive rank-
ing is not available because of the linear combination yy,
which may not be equal to either y, oryy,_ given in lemma
1. However, an interesting special case is yy =yy = yy,,
in which case y, reduces to the best linear approximation
for each group and therefore V[Y;(¢) — Z;(t)yy |X; = X] <
V[Y;(t)|X; = x]. This result implies that whenever the effect
of the additional covariates on the potential outcomes near the
cutoff (via their local linear projections) is (roughly) the same
for both control and treatment units, including the covariates
may lead to efficiency gains.

The efficiency results above are based on large sample
nonparametric approximations using only local linear pro-
jections on the additional covariates. Remarkably, however,
these results are in perfect agreement with those in the litera-
ture on analysis of experiments obtained using Neyman’s re-
peated sampling (Freedman, 2008; Lin, 2013), where it is also
found that incorporating covariates in randomized controlled
trials using linear regression leads to efficiency gains only
under particular assumptions—for example, using our nota-
tion, when E[Y;()|Z;(t),X; = Xl = a; + Z;(t)b;, t =0, 1,
and by = b; (note that this parametric assumption implies
Yy =Yy = YY+)-

These results also show that T(hz) can be a better point
estimator in an MSE sense than its counterpart without co-
variates, T(hz ), where h; denotes the MSE-optimal bandwidth
choice for the standard RD estimator T (Imbens & Kalyanara-
man, 2012; Calonico et al., 2014; Arai & Ichimura, 2018).
Using the explicit formulas, it is easy to give conditions such
that MSE[T(hz)] < MSE[%(h:)] (both have the same rate of
decay), although this is not the main goal of our paper. We still
recommend that T(h:) be the benchmark point estimator be-
cause it relies on minimal identifying assumptions, and thus
researchers can incorporate covariates to increase precision
relative to it.

C. Asymptotic Distribution and Valid Inference

To develop valid asymptotic distributional approxima-
tions and inference procedures, we employ nonparametric
robust bias correction (see Calonico et al., 2014; Calonico,
Cattaneo, & Farrell, 2018, 2019). Inference based on large-
sample distribution theory using MSE-optimal bandwidths
will suffer from a first-order bias, leading to invalid hypothe-
sis tests and confidence intervals because of misspecification
errors near the cutoff. This local smoothing bias involves the
bias term in theorem 1, B:(%), which can be estimated and
removed.

The bias term B3 () is known up to the higher-order deriva-
tives of the unknown regression functions, py_(-), z_(-),
Wy+(+), and py, (-), all capturing the misspecification error
introduced by the local polynomial approximation. These ob-
jects can be estimated nonparametrically. The complete de-
tails are available in the supplemental appendix; we replace
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s by s(h) for implementation. For our presentation, we sim-
ply take as given the bias estimator Bz(b) based on a local
quadratic regression (in general, a higher-order polynomial
than used to form T(4)) and a preliminary bandwidth b — 0,
possibly different from /. Then the bias-corrected covariate-
adjusted sharp RD estimator is

°(h, b) = T(h) — h*B:(b). (7)

An empirically useful choice is b = h, which is both al-
lowed by our asymptotic theory and has some optimality
properties (see Calonico et al., 2018, 2019, for theoretical
results on robust bias correction). This bias correction ap-
proach captures “flexible” regression adjustments to account
for misspecification in finite samples (Calonico et al., 2014,
Remark 7).

The idea behind the robust bias-corrected distributional
approximation is to employ an estimator of the variability
of ©*¢(h, b) for studentization purposes rather than an esti-
mator of the variability of (&) only. Thus, the final missing
ingredient before we can state our asymptotic Gaussianity
result is characterizing the (conditional) variance of the bias-
corrected, covariate-adjusted RD estimator. Its fixed-n vari-
ability is easily characterized by

VE(h, b) = [s' @ P**(h, b)] Zs_ [’ @ P**(h, b))’
+[s' @ P2(h, b)] Tss [§ @ P2 (h, b)),

where the n-vectors P**(h, b) and P (h, b) can be computed
directly from the data, and the n(1 + d) x n(1 + d) matri-
ces of variances and covariances, Xg_ and Xy, are the only
unknowns. The supplemental appendix collects details and
specific formulas.

The (infeasible) variance formula V2°(h, b) differs from
that presented in theorem 1, V;(h), because it also accounts
for the additional variability introduced by the bias estima-
tion, h2B;(b). By virtue of the variance formula being com-
puted both conditionally and preasymptotically, up to the lin-
ear combination term s, it involves only one unknown feature,
¥s_ and X, which must be estimated, thereby considerably
simplifying implementation.

To operationalize the variance formula, we replace un-
known quantities by plug-in estimators thereof, which must
account for the specific data structure at hand, such as
heteroskedasticity or clustering. In the supplemental ap-
pendix, we discuss two different plug-in variance estima-
tors, one based on a nearest-neighbor (NN) approach and
the other based on a plug-in residuals (PR) approach, cov-
ering both conditional heteroskedasticity and clustered data.
Here, we let T)%’C (h, b) denote a generic, feasible estimator of
Ve<(h, b).

Putting together all the pieces, we obtain the following dis-
tributional approximation result, which provides valid local
polynomial inference in sharp RD designs using covariates:
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TABLE 1.—EMPIRICAL ILLUSTRATION: HEAD START DATA

MSE-Optimal bandwidths:

Not Using Covariates

Using Covariates

Standard Covariate Adjusted Covariate Adjusted

RD treatment effect —2.41 —2.51 —2.47
Inference with //b unrestricted

Robust 95% CI [—5.46, —0.10] [—5.37, —0.45] [—5.21, —0.37]

CI length change (%) —8.25 -9.76

Robust p-value 0.042 0.021 0.024
Inference with 7/b =1

Robust 95% CI [—6.41, —1.09] [—6.64, —1.46] [—6.54, —1.39]

CI length change (%) —2.86 —-3.23

Robust p-value 0.006 0.002 0.003
hlb 6.81]10.72 6.81]10.72 6.98|11.64
n | ny 234180 234180 240 | 184

All estimates are computed using a triangular kernel and nearest neighbor heteroskedasticity-robust variance estimators. Columns “Standard” and “Cov Adjusted” correspond to, respectively, standard and covariate-
adjusted RD estimation and inference methods, given a choice of bandwidths. Bandwidths used (/ and b) are data-driven MSE-optimal for either standard RD estimator or covariate-adjusted RD estimator (depending
on the group of columns). Specifically, in the first two columns (“Not Using Covariates”) the bandwidths are selected to be MSE optimal for  (standard RD estimation), while in the third column (“Using Covariates™)

the bandwidths are selected to be MSE optimal for T (covariate-adjusted RD estimation).

Theorem 2 (asymptotic normality). Let the conditions of
theorem 1 hold, and assume <tz =0. If nh’ — 0 and
lim(h/b) < oo, then

. C(h, b) — 1

o \/ (mh)=1Vee(h, b)

VE<(h, b)/VE(h, b)—p1.

—aN(0, 1)

and

Extensions of this result to all other popular RD designs are
available in the supplemental appendix. One of the strengths
of theorem 2 is that the distributional approximation is valid
even when the MSE-optimal bandwidth choice is used, which
is not true of standard inference procedures. Once band-
widths are chosen, asymptotically valid inference procedures
are easily constructed. For example, an approximately 95%
robust bias-corrected, covariate-adjusted confidence interval
for the RD treatment effect T using a common bandwidth
h = b is given by

1.96 /=
°(h, h) — —— -/ V®(h, h),
|: v/ nh k

1.96 Z
®e(h, h) + — -/ VPe(h, h)] .
v/ nh ’

A particularly attractive alternative to MSE-optimal band-
width selection is to develop coverage error rate (CER) op-
timal bandwidth choices. Following the valid Edgeworth
expansions by Calonico et al. (2018, 2019), we also propose
the following plug-in bandwidth selector fega : = n~ /% x
bz. This bandwidth choice minimizes the coverage error rate
for confidence intervals based on theorem 2 and may be pre-
ferred for inference purposes (the supplemental appendix
gives the rate scaling for generic degree p > 1.) (See Cat-
taneo & Vazquez-Bare, 2016, for an introductory discussion
on bandwidth selection for RD designs.)

Theorems 1 and 2 can also be established under clustered
sampling. All derivations and results remain valid, but the
variance formulas will depend on the particular form of clus-

tering. In this case, asymptotics are conducted under the stan-
dard assumptions: (a) each unit i belongs to exactly one of
G clusters, and (b) G — o0 and Gh — oo (see Cameron &
Miller, 2015, for a review of cluster-robust inference and
Bartalotti & Brummet, 2017, for a discussion in the con-
text of MSE-optimal bandwidth selection for sharp RD de-
signs). This extension is conceptually straightforward but
notationally cumbersome and is deferred to the supplemental
appendix. Our companion software in R and Stata also in-
cludes cluster-robust options for bandwidth selection, MSE-
optimal point estimation, and robust bias-corrected inference.

V. Numerical Results

We briefly summarize the main numerical findings from
an empirical illustration and a Monte Carlo study. Additional
simulation results can be found in the supplemental appendix.

A.  Empirical Illustration: Head Start Data

To illustrate our methods, we first reanalyze the effect of
Head Start assistance on child mortality in the United States,
which was first studied by Ludwig and Miller (2007). The
unit of observation is the U.S. county, the treatment is receiv-
ing technical assistance to apply for Head Start funds, and
the running variable is the county-level poverty index con-
structed in 1965 by the federal government based on 1960
census information, with cutoff ¥ = 59.1984. The outcome
is the child mortality rate (for children ages 5 to 9) due to
causes affected by Head Start’s health services component.
We compare the standard RD estimator to the covariate-
adjusted RD estimator employing heteroskedasticity-robust
nearest-neighbor variance estimation. There are nine prein-
tervention covariates from the 1960 U.S. Census: total popu-
lation, percentage of black and urban population, and levels
and percentages of population in three age groups (children
aged 3 to 5, children aged 14 to 17, and adults older than
25). (Full replication code in both R and Stata is available
at https://sites.google.com/site/rdpackages/replication/.)

Table 1 presents the main results. The first row re-
ports the local linear point estimate using the corresponding
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MSE-optimal bandwidth % as described in each column. The
next three rows report 95% robust bias-corrected confidence
intervals, the percentage length change of the covariate-
adjusted confidence interval relative to the unadjusted one,
and the p-value associated with the hypothesis of zero RD
treatment effect. These three rows appear twice, first when £
for the RD point estimator and b for the bias estimator are
chosen separately, and then when b = h. Finally, the last two
rows report, respectively, the estimated bandwidths and the
number of observations to the left and to the right of the cutoff
with X; € [X — h, X + h].

The empirical findings are consistent with our theoretical
results: employing covariate-adjusted RD inference leads to
precision improvements while the point estimators remain
stable. The point estimate ranges from —2.41 to —2.51, and
it is statistically different from 0 at 5% level in all cases. As
should be expected when the additional covariates are truly
predetermined, including covariates does not substantially al-
ter the point estimates (we also implemented “placebo tests”
on the additional covariates and found, as expected, no sta-
tistical evidence of RD treatment effects). Including covari-
ates leads to sizable efficiency gains: the rows labeled “CI
length change (%)” show a nearly 10% efficiency gain when
the bandwidths are unrestricted and optimally chosen using
covariates.

B.  Simulation Evidence

We also investigate the finite sample performance of our
methods using realistic simulated data. We consider four
data-generating processes constructed using the data of Lee
(2008), where all parameters were obtained from real data
unless explicitly noted otherwise. This simulation model
has been used extensively in the literature, which facil-
itates the comparison across studies. All the models in-
clude a predetermined covariate (previous democratic vote
share), and they vary in the importance of this covariate:
(a) in model 1, the covariate is irrelevant; (b) in model 2,
it enters the conditional expectation of the potential out-
comes E[Y;(#)|X;, Z;(t)],t € {0, 1} according to the real data;
(c) model 3 takes model 2 but sets the residual correlation be-
tween the outcome and covariate to 0; and (d) model 4 takes
model 2 but doubles the residual correlation between the out-
come and covariate equations. Models 3 and 4 do not imply
CoolY;(1), Z;(t)|X;] = 0,1 € {0, 1}.

The constructions allow E[Y;(7)|X;, Z;(¢)] to have differ-
ent coefficients on each side of the cutoff, while the con-
ditional expectation of the potential covariates E[Z;(7)|X;],
t € {0, 1}, are constructed assuming they are continuous at
the cutoff (but still with different coefficients on either side).
Therefore, our covariate-adjusted RD estimator is “misspec-
ified” when viewed as a local weighted least squares fit. To
conserve space, all details and results of our Monte Carlo
study are given in part V of the supplemental appendix.
All findings are consistent with our large sample theory. We
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find that covariate-adjusted local polynomial analysis can im-
prove both MSE and interval length, sometimes dramatically.
The gains are largest in model 4, with the amplified resid-
ual correlation, and least in model 3, when that channel is
shut down, as the theory predicts. The results for model 1
show that including an irrelevant covariate hardly changes
empirical results and conclusions. Finally, we find that our
data-driven bandwidth selectors work reasonably well.

VI. Conclusion

We provided a formal framework for identification, esti-
mation, and inference in RD designs when covariates are
included in local polynomial estimation. We augmented the
standard local polynomial estimator with covariates enter-
ing in an additive-separable, linear-in-parameters way and
showed that the resulting covariate-adjusted RD estimator
remains consistent for the standard RD treatment effect if
the covariate adjustment is restricted to be equivalent above
and below the cutoff. Furthermore, this estimator can achieve
substantial efficiency gains relative to the unadjusted RD es-
timator. Thus, we are able to characterize precisely the po-
tential for point estimation and inference improvements and,
in particular, efficiency gains. We also provided new MSE
expansions, several optimal bandwidth choices and optimal
point estimators, robust nonparametric inference procedures
based on bias correction, and heteroskedasticity-consistent
and cluster-robust standard errors. Our results and practical
methods cover sharp, fuzzy, and kink RD designs, and we
also discuss extensions to clustered data. Finally, we illus-
trated the practical implications of our results using both an
application and simulated data.
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