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Part 1
Omitted Details from Main Paper

This section briefly summarizes omitted details from the main paper concerning the Sharp RD
design, and also reports a an overview of the main results, analogous to those reported in the main

paper, for other RD designs. All remaining details are given in Part II and Part III below.

1 Sharp RD Design Main Formulas

We give a very succinct account of the main expressions for sharp RD designs, which were omitted
in the main paper to avoid overwhelming notation. These formulas are derived in Part II below,
where also the notation is introduced. The main goal of this section is to give a quick self-contained
account of the main expressions, but most details on notation are postponed to the following parts
of this supplemental appendix.

Let Ry(h) = [(rp((X1 — Z)/R),- -+ ,rp((X,, — Z)/Rh))’] be the n x (1 + p) design matrix, and
K_(h) = diag(1(X; < 2)Kp(X; — ) : i =1,2,--- ;n) and K4 (h) = diag(1(X; > Z)Kp(X; — Z) :
i=1,2,---,n) be the n x n weighting matrices for control and treatment units, respectively. We
also define ugal = gf)_, u(ZaZ’)’, u(SaJ)r = (ugfi_, ug_’)’, a € Zy, where g©¥)(z) = 9°g(x)/0z® for any
sufficiently smooth function g(-). Let o%_ := V[S;(0)|X; = z] and %, := V[S;(1)|X; = |, and
recall that S;(¢) = (Yi(t),Z;(t))’, t € {0,1}. Let e, denote a conformable (1 + v)-th unit vector.
Finally, recall that s(h) = (1, =4y (h))" and s = (1, —vy)".

The pre-asymptotic bias Bz(h) = Bz4(h) — Bz—(h) and its asymptotic counterpart Bz := Bz4 —

B;z_ are characterized by

(p+1) 7, (p+1)

_ s'mg s'pg
Bz (h) := egT' =} (R)D_ ,(R) (pj or Bi = e{)Ap,—ﬁ
e e

Bz (h) := eé)r—;,lp(h)ﬂﬁp(h) —p Brii=epl,

(p+1)! (p+1)!

where, with the (slightly abusive) notation v* = (v§, 05, .-+ 0k) v, = (1,--- ;1) e R*, T_ ,(h) =

R, (h)'K_(h)Ry(h)/n and 9_ »(h) = Ry(h)'K_(h)(X — Zt,/h)PH /n, Ty ,(h) and 94 p(h) defined
analogously after replacing K_(h) with K (h), and

A,_ = < / ’ rp(u)rp(u)/K(u)du)l ( / ’ r,,(u)quK(u)du),

—00 — 00

A, = < /O - rp(u)rp(u)'K(u)du> - < /O h rp(u)quK(u)du) .

The pre-asymptotic variance V;(h) = Vz_(h) + V71 (h) and its asymptotic counterpart Vi :=



Vi_ + Vz4 are characterized by

Va_(h) = [s' @ ehP_,(h)|S P_,(h SRR, L =N
7— = [s'®@eyP_p(h)]Es_[s@P_ ,(h)eg] —p T Ty €oAp,—€0

s’a'%+s

Vei(h) = [8' ® )Py ()] S fs @ Poy(h)eq] —p Vot i= T —

where P_,(h) = VAT, ()R, (h)K_(h)/\/ii and Py ,(h) = VALY ()R, (h) Ko (k) /y/, and

re=(f . £y, (0) K () R (f . (o o)au) ([ . £y, () K () N

Ay = < /0 b rp(u)rp(u)’K(u)du> - < /O b r,,(u)rp(uy?du) ( /0 h rp(u)rp(u)'K(u)du) o
(p+1)

To construct pre-asymptotic estimates of the bias terms, we replace the only unknowns, p g

and ufqul)

width b. This leads to the pre-asymptotic feasible bias estimate Bz (b) := Bz (b) — Bz_ (b) with

, by g-th order (p < q) local polynomial estimates thereof, using the preliminary band-

. s P (p . s 2P (p
Br-(b) = epT'}, (M)9— >W and Bz (0) :=e6r+;<h>ﬂ+,p<h>(zﬁ§’;()

where ﬂg;j;)(b) and ﬁg?: q)(b) collect the g-th order local polynomial estimates of the (p + 1)-th
derivatives using as outcomes each of the variables in S; = (V;, Z,)’ for control and treatment units.

Therefore, the bias-corrected covariate-adjusted sharp RD estimator is

() = \/%[s(h)’ e (P (h.b) — P, (h,b))]S,

with S = (Y, vec(Z)'), Y = (Y1,Y2,---,Y,), and

P (h,b) = VAT Z! (h) [Ry(h)K_(h) — pP9_ ,(h)e, , T=L (B)Rq(b)K_(b)] /v/n,

P, (h.b) = VAL, (h) [Ry(h) K (h) = p P9y (h)ey, 1 TTL ()R (0) K. (B)] / v/,

where f’ti“,p(h, b) and f"ifp(h, b) are directly computable from observed data, given the choices of
bandwidth A and b, with p = h/b, and the choices of polynomial order p and ¢, with p < gq.

The exact form of the (pre-asymptotic) heteroskedasticity-robust or cluster-robust variance
estimator follows directly from the formulas above. All other details such preliminary bandwidth
selection, plug-in data-driven MSE-optimal bandwidth estimation, and other extensions and results,

are given in the upcoming parts of this supplemental appendix.



2 Other RD designs

As we show below, our main results extend naturally to cover other popular RD designs, including
fuzzy, kink, and fuzzy kink RD. Here we give a short overview of the main ideas, deferring all details
to the upcoming Parts II and III below. There are two wrinkles to the standard sharp RD design
discussed so far that must be accounted for: ratios of estimands/estimators for fuzzy designs and

derivatives in estimands/estimators for kink designs.

2.1 Fuzzy RD Designs

The distinctive feature of fuzzy RD designs is that treatment compliance is imperfect. This implies
that T; = T;(0) - I(X; < z) + T;(1) - 1(X; > Z), that is, the treatment status 7; of each unit
i=1,2,--- ,nisno longer a deterministic function of the running variable X;, but P[T; = 1| X; = z]
still changes discontinuously at the RD threshold level z. Here, T;(0) and T;(1) denote the two
potential treatment status for each unit 7 when, respectively, X; < Z (not offered treatment) and
X; > @ (offered treatment).

To analyze the case of fuzzy RD designs, we first recycle notation for potential outcomes and

covariates as follows:

Yi(t)
Z;(t)

Yi(0) - (1 - (1)) + Yi(1) - Ty(t)
Z:(0) - (1 - T4(t) + Zi(1) - (1)

for t = 0,1. That is, in this setting, potential outcomes and covariates are interpreted as their
“reduced form” (or intention-to-treat) counterparts. Giving causal interpretation to covariate-
adjusted instrumental variable type estimators is delicate; see e.g. Abadie (2003) for more discus-
sion. Nonetheless, the above re-definitions enable us to use the same notation, assumptions, and
results, already given for the sharp RD design, taking the population target estimands as simply
the probability limits of the RD estimators.

We employ Assumption SA-5 (in Part III below), which complements Assumption SA-3 (in
Part II below). The standard fuzzy RD estimand is

TY

S = TT’ TY = Hy4+ — Hy—, Tr = P4 — Hp—)

where recall that we continue to omit the evaluation point z = Z, and we have redefined the potential
outcomes and additional covariates to incorporate imperfect treatment compliance. Furthermore,
now 7 has a subindex highlighting the outcome variable being considered (Y or T'), and hence
T = Ty by definition.

The standard estimator of ¢, without covariate adjustment, is

S(h) = = v (h) = eoBy ¢ ,(h) — eBy _ ,(h),



with V' € {Y, T}, where the exact definitions are given below. Similarly, the covariate-adjusted

fuzzy RD estimator is

S(h) = 7y (h) = e6By p(h) — eBy_ 5 (h),

with V' € {Y, T}, where the exact definitions are given below. Our notation makes clear that the
fuzzy RD estimators, with or without additional covariates, are simply the ratio of two sharp RD
estimators, with or without covariates.
The properties of the standard fuzzy RD estimator ¢(h) were studied in great detail before,
while the covariate-adjusted fuzzy RD estimator ¢(h) has not been studied in the literature before.
Let Assumptions SA-1, SA-3, and SA-5 hold. If nh — oo and h — 0, then

b TY — [HZ+ - MZJ"YY
T — [Hz+ —pz_yr ’

S(h) —

where vy = (0%_ + 0%,) BI(Z:(0) — pz_ (X))Vi(0) + (Zs(1) — ppe (Xe)Vi(D)|Xs = @] with
VelY,T}.

Under the same conditions, when no additional covariates are included, it is well known that
¢(h) —p ¢. Thus, this result clearly shows that both probability limits will coincide under the same
sufficient condition as in the sharp RD design: gy = py,. Therefore, at least asymptotically, a
(causal) interpretation for the probability limit of the covariate-adjusted fuzzy RD estimator can
be deduced from the corresponding (causal) interpretation for the probability limit of the standard
fuzzy RD estimator, whenever the condition g, = p,, holds.

Since the fuzzy RD estimators are constructed as a ratio of two sharp RD estimators, their
asymptotic properties can be characterized by studying the asymptotic properties of the corre-
sponding sharp RD estimators, which have already been analyzed in previous sections. Specifically,
the asymptotic properties of covariate-adjusted fuzzy RD estimator Z (h) can be characterized by

employing the following linear approximation:

S(h) —s =£(7(h) — 1) + e,

_| S — %y(h)] T_[TY]
fg_[—?]’ (h)_[mh) ’ ESEE

T

with

and where the term e: is a quadratic (high-order) error. Therefore, it is sufficient to study the
asymptotic properties of the bivariate vector 7(h) of covariate-adjusted sharp RD estimators, pro-
vided that ez is asymptotically negligible relative to the linear approximation, which is proven below
in this supplemental appendix. As before, while not necessary for most of our results, we continue
to assume that py = py, so the standard RD estimand is recovered by the covariate-adjusted

fuzzy RD estimator.



Employing the linear approximation and parallel results as those discussed above for the sharp
RD design (now also using 7; as outcome variable as appropriate), it is conceptually straightfor-
ward to conduct inference in fuzzy RD designs with covariates. All the same results outlined in the
previous section are established for this case: in this supplemental appendix we present MSE ex-
pansions, MSE-optimal bandwidth, MSE-optimal point estimators, consistent bandwidth selectors,
robust bias-corrected distribution theory and consistent standard errors under either heteroskedas-
ticity or clustering, for the covariate-robust fuzzy RD estimator {(h). All details are given in Part
IIT below, and these results are implemented in the general purpose software packages for R and
Stata described in Calonico, Cattaneo, Farrell, and Titiunik (2017).

2.2 Kink RD Designs

Our final extension concerns the so-called kink RD designs. See Card, Lee, Pei, and Weber (2015)
for a discussion on identification and Calonico, Cattaneo, and Titiunik (2014b) for a discussion on
estimation and inference, both covering sharp and fuzzy settings without additional covariates. We
briefly outline identification and consistency results when additional covariates are included in kink
RD estimation (i.e., derivative estimation at the cutoff), but relegate all other inference results to
the upcoming parts of this supplemental appendix.

The standard sharp kink RD parameter is (proportional to)

1 1
Ty,1 = :U’g/_)k - Mgf)_)

while the fuzzy kink RD parameter is
Ty,1

TT1

§1 =

where 771 = u(TlJ)r — N(le In the absence of additional covariates in the RD estimation, these RD

treatment effects are estimated by using the local polynomial plug-in estimators:

X . Fva(h)
Fya(h) =€ h) — e h 4 ey(n = Dalh)
Tya(h) = e1By p(h) —e1By_,(h)  an S1(h) Frah)’
where e; denote the conformable 2nd unit vector (i.e., e; = (0,1,0,0,---,0)). Therefore, the

covariate-adjusted kink RD estimators in sharp and fuzzy settings are

Fya(h) = €1 By ,(h) — €l By _ ,(h)

and ~
Tya(h)

7ra(h)’

respectively. The following lemma gives our main identification and consistency results.

S1 (h) = 7~—V,l(h’) = elllév+,p(h) - eILBV—,p(h)J Ve {K T}7



Let Assumptions SA-1, SA-3, and SA-5 hold. If nh — oo and h — 0, then

Tya(h) —p Ty — [N(ZIJ)r - H(le],'YY

and o
Tyq — gy — w7y

TT1 — [,U(Zli - H(le],’YT

S1(h) —p

)

where vy and vy are defined in the upcoming sections, and recall that u(Zl)_ = u(ZIZ (z) and ;L(le_ =

pY) (7) with pf) (2) = Opy_(2)/0x and pY) () = Oy, (v) /0.

As before, in this setting it is well known that 7y 1 (h) —p Ty;1 (sharp kink RD) and ¢1(h) —p <1
(fuzzy kink RD), formalizing once again that the estimand when covariates are included is in general
different from the standard kink RD estimand without covariates. In this case, a sufficient condition
for the estimands with and without covariates to agree is p,(ZlJ)r = u(Zl)
kink RD designs.

While the above results are in qualitative agreement with the sharp and fuzzy RD cases, and

for both sharp and fuzzy

therefore most conclusions transfer directly to kink RD designs, there is one interesting difference
concerning the sufficient conditions guaranteeing that both estimands coincide: a sufficient con-
dition now requires u(ZlJ)r = u(Zl)_ This requirement is not related to the typical falsification test
conducted in empirical work, that is, p,, = p,_, but rather a different feature of the conditional
distributions of the additional covariates given the score—the first derivative of the regression func-
tion at the cutoff. Therefore, this finding suggests a new falsification test for empirical work in kink
RD designs: testing for a zero sharp kink RD treatment effect on “pre-intervention” covariates.
For example, this can be done using standard sharp kink RD treatment effect results, using each
covariate as outcome variable.

As before, inference results follow the same logic already discussed (see Parts II and III for
details). All the results are fully implemented in the R and Stata software described by Calonico,

Cattaneo, Farrell, and Titiunik (2017).



Part 11
Sharp RD Designs

Let |-| denote the Euclidean matrix norm, that is, |A|? = trace(A’A) for scalar, vector or matrix
A. Let a, = b, denote a, < Cb, for positive constant C' not depending on n, and a, =< b,
denote C1b, < a, < Csb, for positive constants Cy and Cs not depending on n. When a subindex

P is present in the notation, the corresponding statements refer to “in probability”. In addition,

7 13

statements such as “almost surely”, “for i small enough” or “for n large enough” (depending on the
specific context) are omitted to simplify the exposition. Throughout the paper and supplemental

appendix v, p,q € Z4 with v < p < q unless explicitly noted otherwise.

3 Setup

3.1 Notation

Recall the basic notation introduced in the paper for Sharp RD designs. The outcome variable and

other covariates are
Y, =T,-¥,(1) + (1= 1) - ¥;(0)

Z:=Ti-2:(1) + (1 - T}) - Z:(0)

with (Y;(0),Y;(1)) denoting the potential outcomes, T; denoting treatment status, X; denoting the
running variable, and (Z;(0)’,Z;(1)") denoting the other (potential) covariates, Z;(0) € R% and
Z;(1) € R In sharp RD designs, T; = 1(X; > 7).

We also employ the following vectors and matrices:
Y:[Yla"'aYn]la X:[Xla"'aXn]la

Z:[Zl,---,Zn]', Zi:[Zil,Zig,"',Zid]/, 1=1,2,---.,n,
Y(0) = [Yi(0)- Yo (O, Y1) = (1), Ya(1),
2(0) = [Z:(0), - . Z (O, Z(1) = [Zi(1), -, Zu(1)],

py_(X) =E[Y(0)X],  py, (X)=E[Y()X],
Sy_ = VIYO)X],  Zys = V[Y(1)X],
ny (X) = Blvee(Z(0))[X],  pz, (X) = Blvec(Z(1)[X].
Sz = Vivee(Z(0)X],  Tz. = Vivee(Z(1)[X].

Recall that e, denotes the conformable (v + 1)-th unit vector, which may take different dimensions

in different places.



We also define:

py_(2) = B0 X = o], iy, (2) = BIY:()]X; = o]

oy _(2) = V[Yi(0)|X; =a],  oF, () = V[Yi(1)|X; = ],
and

pz_(z) =B[Z(0)|X; =2],  pzi(z)=E[Z1)X;=xz],

o%_(z) =V[Z0)|X; =z], 0% (x)=V[Z;(1)|X; =z,
where

g, (x) =B[Zi(0)| X; =],  py.(x) =E[Zy(1)|X; = a],
for £=1,2,--- ,d.

In addition, to study sharp RD designs with covariates, we need to handle the joint distribution
of the outcome variable and the additional covariates. Thus, we introduce the following additional

notation:
Si=[Yi,Z]',  Si(0) = [¥i(0),Z:(0)]",  Si(1) = [¥i(1),Z:(1)]",

S = [Y7 Z] ) S(O) = [Y(())v Z(O)] ) S(1) = [Y(l)a Z(l)] )

3.2 Assumptions

We employ the following assumptions, which are exactly the ones discussed in the main paper.

Assumption SA-1 (Kernel) The kernel function k(-) : [0,1] — R is bounded and nonnegative,

zero outside its support, and positive and continuous on (0,1). Let
K(u) = 1(u < 0)k(—u) + 1(u > 0)k(u),

Kn(w) = 1u < 0k (—u) + 1(u > Ok, (w),  En(u) = %k (7). h=(h.hy.

In what follows, h denotes a generic bandwidth (e.g., h = h_ or h = h; depending on the

context). Whenever necessarily, we assume throughout that h_ o hy for simplicity.

Assumption SA-2 (SRD, Standard) For p > 1, zj,z, € R with ; < & < zy, and all x €

[x1, 4



(a) The Lebesgue density of X;, denoted f(x), is continuous and bounded away from zero.
(b) py_(x) and py () are o times continuously differentiable.

(¢) 0% _(x) and o} (x) are continuous and invertible.

(d) B[|Yi(t)[*|X; = =], t € {0,1}, are continuous.

Assumption SA-3 (SRD, Covariates) For o > 1, x;,z, € R with x; < & < xy, and all z €
[l‘l, $u] 3

(a) E[Z;(0)Y;(0)|X; = z] and E[Z;(1)Y;(1)|X; = x| are continuously differentiable.

(b) ps-(
(c) o%_(
(d) E[|Sl(t)| | X; = x|, t € {0,1}, are continuous.
(¢) ny) (2) = uy) (2).

)
x) and pg(x) are o times continuously differentiable.
)

z) and 0%, (x) are continuous and invertible.

4 Standard Sharp RD

The main properties of the standard sharp RD estimator have been already analyzed in Calonico,
Cattaneo, and Titiunik (2014b) and Calonico, Cattaneo, and Farrell (2018, 2019) in great detail. In
this supplement we only reproduce the results needed to study the covariate-adjusted RD estimator.

Under Assumption SA-2, the standard (without covariate adjustment) sharp RD estimand for
r<5is:

Tyy = /’Lgi/J)r - Mg’j17

v _ 0¥
Mgm)r Mg/i(ff) = @MYJF(J“)

where we set py_ = #(YO)_ and fy, = ,ugﬁ)l. Define

— 1 1 1 2 1 !/
IBY—,p = ,BY—JJ(J?) = [My_ ) F,Ug/), , g,ug/z Lo p!’ug)} :
— 1 1 2 1 !/
Byip=Byip(@) = [er ; ﬁuﬂ , Qﬂgfzr S ggjr} .

The standard, without covariate adjustment, sharp RD estimator for v < p is:
S h) = ~ (V) h - ~ (V) h
Tyw(h) :uy+,p( +) MY_,p( -,
iy () = vieL By (k). i) (k) = vielBy_ (),

-~

By_p(h) = f;rg]émﬂz 1(X; < 2)(Yi — rp(Xi — 7)'8)kn(—(Xi — 7)),
eRMP Ty



By 1 p(h) = argmin Y " 1(X; > 2)(Y; — ry(X; — 2)'8)%kn(X; — Z),
BERL+P =1

where ry(z) = (1,z,--- ,2P)’, e, is the conformable (v + 1)-th unit vector, ky(u) = k(u/h)/h with

k(-) the kernel function, and h is a positive bandwidth sequence. This gives

By_,(h) =H Y (WL (M) Xy_p(h), By ,(h) =H, (T (R)Yyi,(h),

T (k) = Ry(hYK_(Ry(A)/n, Ty ,(h) = Ry(h)K_ (W)Y /n,

Ty p(h) = Ryp(h)Ki(WRy(h)/n,  Tyyp(h) =Ry(h) Ky ()Y /n,

where .
X, —Zz Xo—Z X,—Z

Rp(h):[l‘p< >,I‘p< )7"'7rp< >:| )

h h b ) daxtn)

Hy(h) = diag(h? - j = 0,1, .p)= | . . ,
00 o
K_(h) =diag(1(X; < 2)kp(—(X; — 7)) :i=1,2,--- ,n),
K. (h) =diag(1(X; > 2)kp(X; —2) :i=1,2,--- ,n).
We introduce the following additional notation:

py (X)) = [py _(X1), py_(X2), - - :MY—(XH)]/v

HY+(X) = [NY+(X1)»NY+(X2), T aNY+(Xn)],a

and, with the (slightly abusive) notation v* = (v}, v§ ... k) for v € R",
O p(h) = Ry(h)'K_(h)((X — 2¢,)/0) P /m,

01 p(h) = Ry(h)' K4 (h) (X — 2¢,) /1) [,

where ¢, = (1,1,--- ,1) € R™.
Finally, to save notation, set

P_,(h) = VAR, (h)K_(h)/v/n,
Py (k) = VAT (R, (h)YK (h)/vn,

which gives
BY—,p(h) = 7H_l(h)P—,P(h‘)Ya



Bysall) = = H; (1P (W)Y,

4.1 Hessian Matrices and Invertibility

The following lemma handles the Hessian matrices I'_ ,, and I} ,. This result is used below to give
conditions for asymptotic invertibility, thereby making local polynomial estimators well defined in

large samples.
Lemma SA-1 Let Assumptions SA-1 and SA-2 hold. If nh — oo and h — 0, then
L p(h) =Bl ()] +op(1)  and  Typ(h) =By p(h)]+ op(l),
with 0
BIE ()] =T p{1+ o0}, Top=f [ mpunw/K(udu,

BT, ()] =T, {1 +0()}, Ti,=7 /0 " () () K (u)du,

where recall that f = f(Z).

Proof of Lemma SA-1. Recall that for any random variable, vector or matrix A,,, Markov in-
equality implies A,, = E[A,,]+ Op(|V[A,]]). Thus, the result follows by noting that [V[T'_ ,(h)]|? =
O(n~th=1) and similarly |V[T'y ,(h)]|> = O(n~th~1). The second part follows by changing variables
and taking limits. B

4.2 Conditional Bias

We characterize the smoothing bias of the standard RD estimator %yﬂj(h). We have
BlBy_,(h)|X] = Hy ' (h)T =L, (h)R, (h) K_(WE[Y (0)|X]/n,
ElBy ., (W)IX] = Hy " (W)T1L ()R, (h)Y K. (h)BLY (1) X] /n.

Lemma SA-2 Let Assumptions SA-1 and SA-2 hold with o > p+ 2. If nh — oo and h — 0, then

E[By_p(h)|X] = By, + H; ' (h) [WPBy_ pp(h) + h* By p1p(h) + 0p(h*7)]

E[BY—F,p(h)‘X] =Byip Tt Hgl(h) (W' PBy . pp(h) + B PByy p14p(h) + op(h*TP)]

ith
w1 (14a) M(lJra)
BY_’p’a(h) = I‘:»lp(h)ﬂ*vpva(h)ﬁ P BY—,p,a = I‘:inﬂf,p,aﬁa
§/1+a) M§/1+a)
Brpa(®) = Loy ()04palh) (55 = Brvwa = TopPema iy oy
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and where
9_pa=1f / w)ul T K (u)du, Vypa=1F /0 rp(w)u' T K (u)du,

po P = P @),y = 0P (@) and f = f(z).

Proof of Lemma SA-2. A Taylor series expansion of py_(z) at = Z gives

EBy_,(MIX] = H,'(WTZ}(h)Ry(h)K_(h)py_(X)/n
= By_,+H, () [W"PBy_,,(h) + BBy _ p14p(h) + op(h*P)]
and similarly for E[BY +p(R)|X], verifying the first two results. For the last two results, Lemma
SA-1 gives I‘:}p(h) = I‘:’lp +op(1) and I‘;}p(h) = I‘;}p + op(1), while by proceeding as in the proof

of that lemma we have 9_ , o(h) = E[9_ p, o(h)]+op(1l) and D_ p ,(h) = E[I_ , o(h)]+o0p(1), and by
changing variables and taking limits we obtain E[9_ ,, ,(h)] — ¥_ ;o and E[9 p 4(h)] = 4 pa- 1

4.3 Conditional Variance

We characterize the exact, fixed-n (conditional) variance formulas of the standard RD estimator
7y (h). These terms are V[,By,,p(hﬂX] and V[By+7p(h)|X].

Lemma SA-3 Let Assumptions SA-1 and SA-2 hold. If nh — oo and h — 0, then

V[By_,(WIX] = H,'(WT"L(h)R,(h)K_(h) Sy _K_(h)Ry,(h)I ) (h)H, " (h)/n’
= HU WP (WS P ()/H (),
V[By, ,(W)X] = H;1(h)rl}p(h)Rp(h)'K+(h)2Y+K+(h)Rp(h)FI,1p(h)H,?l(h)/n2
= H (WP () Sy P (1) H (),
with
nhH,(h)V[By_ ,(h)|X]H,(h) —p TZ2 @y T
RREL, (1) V[By , ,(h) XH, (h) — T,y 07,
and where
0 00
Wy, = fa%/_/_ rp(u)rp(u)'K(u)Qdu, Wy, ,= fa%ur/o rp(u)rp(u)'K(u)Qdu,
oy =0y (%), 05, =03, (T) and f = f().
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Proof of Lemma SA-3. The first two equalities follow directly. Lemma SA-1 gives I‘:}p(h) =
I'-! +op(1) and T7L(h) = T7L + op(1). Set

Wy _,(h) = hRy(h)K_(h)Yy_K_(h)Ry(h)/n

and
Wy () = KRy (h) Ko () Ty K (MR, (h) /m,

and, by proceeding as before, we have Wy _ ,,(h) = E[®y_ ,(h)]+op(1) and ¥y ,(h) = E[¥y ,(h)]+
op(1), and also E[W¥y_ ,(h)] — ¥y_ , and E[¥y 4 ,(h)] — ¥y, ,, by changing variables and taking

limits. 1

5 Covariates Sharp RD

We also employ repeatedly properties and results for sharp RD regressions for the covariates Z;.

Define v v
ny! =pg) @ = gy @) . kgl =ug@) = 5 ong ()|

T=T T=T

and where, with exactly the same notation logic as above,

.U(Zyz' =vle,By_, By =Bz ps B Bz pltp)xds
!/
H’(Zyj- = I/!ely:@Z—H IBZ+ = [/BZH-,p s ,8Z2+7p , o, ’BZd+,p](1+p)Xd7
[ @ o @ 7’
= 7) — Pz,—  Hz,— Kz,
Bz, p =Bz, (&)= bz, T T p! )
I ORNG () 7'
= =) — Bz Hz,+ MZPH
ﬂZz-hp - ﬁZz-‘rﬁD(l’) = |KZ+ T T e o ’

_ 0 0 _ _ 0 0 _
Hz— = pz,4(Z) = M(ZZ_ = u(zf+(x) and iz, = pg,(T) = M(ZZ+ = M(Z[L(w), for £=1,2,---,d.

Therefore, following the same notation as in the standard sharp RD, we introduce the sharp

RD estimators:

By p(h) =H, Y (ML (M) Yz p(h),  Yz_p(h) = Ry(h)K_(h)Z/n,

By p(h) =H{ WL (MY 20 p(h),  Yzip(h) = Ry(h)Ki(h)Z/n.

Observe that
IBZ—,p(h) = [IBZl—,p(h) > IBZQ—,p(h) y T IBZd—,p(h)](ler)Xda

BZJr,p(h) = [BZ1+,p(h) ) BZer,p(h) y IBZd+,p(h)](1+p)><da

which are simply the least-square coefficients from a multivariate regression, that is, ,@ z,— p(h) and

13



BZg—i-,p(h) are ((14 p) x 1) vectors given by

Bz, p(h) = argr?inz 1(X; < 3)(Zig — rp(X; — 7) D)%k (—(X; — 7)),

Bzt p(h) = argmin > " U(X; > T)(Zig — vp(Xi — 2)'b)?kn(X; — T),
beRl+r ;77

fort=1,2,---,d.
Note that

H (WP_y(WZ,  By.,(h) = ——H; ()P, ,(W)Z,

BZf,p(h):ﬁ D nh P

or, in vectorized form,

>
[

vec(Bz_ p(h) = —=[a @ H, ()P _ ,(h)] vec(Z),

veelBzyp (1) = = [La @ Hy ()P ()] vee( ),

using vec(ABC) = (C' @ A) vec(B) (for conformable matrices A, B and C).

Finally, the (placebo) RD treatment effect estimator for the additional covariates is

#20(h) = py) (he) — %) (o)

with

pY) () =vielB, ,(h), By (h) = ve,By, ,(h).

5.1 Conditional Bias

We characterize the smoothing bias of the standard RD estimators using the additional covariates

as outcomes. We have

E[B- ,(h)|X] = H, (W)L Z}, ()R, (h) K (R)E[Z(0)[X] /n,

E[Bz ,(h)X] = H, (W), ()R, (h) K. (E[Z(1)[X] /n.

Lemma SA-4 Let Assumptions SA-1, SA-2 and SA-83 hold with ¢ > p+2. Ifnh — oo and h — 0,
then

Blvec(B; ,(1)|X] = vec(Bz_ )+ La@H, ()] [117By_ (k) + h* 7By (k) +0p (h27)]

E[VGC(BZJr,p(th] = Vec(5Z+,p)+[Id®H;1(h)} [thBZﬁp,p(h) + h2+pBZ+,p71+p(h) + OIP’(h2+p)] )
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where

(I+a) (1+a)
Bz-pa(h)=[Ia® F:,lp(h)ﬁﬁp,a(h)]ﬁ —p Bz pa=[la® I‘_’lpﬁ%a]:ia)!’
'u(l—i—a) “(Hﬂ)
Bl = e 000 B = 1550,
N(lep) = M(Zl_ﬂ)) (Z) and p,(le_rp) — M(Zl:p) (z).

Proof of Lemma SA-4. The proof is analogous to the one of Lemma SA-2. We only prove

the left-side case to save space. First, a Taylor series expansion of p,_(x) at x = & gives

E[Bz-,(h)X]
— H, (WD~ ()R, () K_ (W) (X)
u(1+p)/ u(2+p)f
_ -1 1+pp—1 Z— 24pp—1 Z— 2+
- IBZ—,p + Hp (h) [h pr—,p(h)ﬁ_J?vp(h) (1 +p)| +h pF—,p(h)ﬁ—JLlﬂ'l(h)m + OP(h p) 9
and similarly for E[3, +p(R)[X]. Second, note that
el L+
-1 -1 Z— _ -1 —1 Z—
vee (Hp (h)rf,p(h)'ﬂ*,l’ya(h‘) (1 4 a)|) [Id ® Hp (h)I‘,p(h)’ﬂ,,p’a(h)] (1 + G,)V

where vec(py T = pG ) and [LieH,  (WTZL (B9 o(h)] = [L@H, L (h)][L@T L (h)9_ 4.4 (k).
The rest follows directly, as in Lemma SA-2. 1

5.2 Conditional Variance

We characterize the exact, fixed-n (conditional) variance formulas of the standard RD estimators us-

ing the additional covariates as outcomes. These terms are V[VQC(BZ_’p(h)) |X] and V[Vec(Bsz(h)) 1X].

Lemma SA-5 Let Assumptions SA-1, SA-2 and SA-8 hold. If nh — oo and h — 0, then

Vvec(Bz_,(W)IX] = M@ H, (WL (M)R,(A) K- (1)]Sz-[Lg © K- ()R, (W)T_}, (W) H,* (b)) /n?

—P —P p

= %[Id ® H (W)L @ P_,(h)]22-[I; @ P_,(h) ][Iy @ H, (h)],

Vvec(Bz, ,(W)IX] = [Ma@H, (WL (MR,(A) Ko (1)]S 24 [Lg © Ko (R, (W, (W), ()] /n?
1

= e H, ' (W)L @ Py (W) 224 Lo @ Py (h)][La @ H H(B)],

with
nh(Iy @ Hy(h)]V[vec(B;_ ,(h)|X][Iq @ Hy(h)] —p I @ T )W, [T @ T2,
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nh{lq @ Hy()]V[vec(B 1 (1) X][a @ Hy(h)] —p [la @ T3] z4 p[1a @ T,

where
0
oy 1@} o [ nmWEeral, o -k @ - vzoK -1,
and
Vi, = () [a% o [ rp<u>rp<u>'f<<u>2du] C od = od (@) = V[Z()|Xi = a.

Proof of Lemma SA-5. We have

~

vee(By_p(h)) = [La®H, (W, (h)Ry(h) K- ()] vec(Z(0))

= [Lg@H, ()]s T2, (k)]s @ Ry (h) K- (k)] vec(Z(0))
and

vee(Bzy p(h) = [La®H, (LT ()R, (h) Ko (k)] vec(Z(1)
= L@ H, (W)][Tg ® T ()] [T @ Ry () K4 (1) vee(Z(1))

and thus the first two equalities follow directly. Lemma SA-1 gives I‘:}p(h) = F:}}j + op(1) and
I (h) =T7), + op(1). Set

@ (1) = Kl ® Ry(h)K_(h)]S7_[Ls © K_(W)Ry(h)] /n

and
Vs p(h) = h[Ls @ Ry(h) K (W] B2+ Ly ® K (W) Ry (h)]/

and by proceeding as before we have ¥ _ ,,(h) = E[¥z_ ,(h)]+op(1) and ¥z ,(h) = E[¥ 7, ,(h)]+
op(1), and by changing variables and taking limits we obtain E[¥_ ,(h)] — ¥5_ , and E[¥ 7, ,(h)] —
‘IIZ+,p- |

Finally, observe that

0
LT W, ol ] =05 (7)o f(2)T-), </ rp(u)rp(u)’K(u)Zdu> F:}p}

—00

2 —

oy (2) 1 -1

- RS AR 2V
U%/, (x) P P P

and similarly
—1 1 U2Z+(f) —1 -1
La @ T Wz pla@ T ] = 570 @ T Wy I
UY+($)
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6 Covariate-Adjusted Sharp RD

For v < p, the Covariate-Adjusted sharp RD estimator implemented with bandwidths h = (h_, h4)

1S:

%Y,l/(h) = V!e/2+p+1/BY,p(h) - V!e;/BY,p(h)a

3 Y,p(h>

Pralt) = [ Sy

] ) BY,p(h) € R2+2p7 ;?Y,p(h) € Rda

n
Oy,p(h) = %rgtr)ninZ(Yi —r_p(X; —2)'b_ —ry ,(Xi — 7). — Ziy)*Kn(Xi — 7),
—H 0+, i=1

where b_ € R*? b, € R1*P, v € R¢, and
r_p(u) == Hu < 0)rp(u), rip(u) = 1(u = 0)rp(u).
Using partitioned regression algebra, we have

BY,p(h) = BY,p(h) - BZ,p(h)’?Y,p(h)v ’?Y,p(h) = F;I(h)TY,p(h)v
where A
?Yf,p(h*)

] By p(h-)
By +p(h+) (2+2p)x1

/8Z+,p(h+) ] (2+2p)><d

)

BY,p(h) = ! ) BZ,p(h) = [

and

Ly(h) = Z'K_(h)Z/n— Yz p(h_)TZ,(A) Yz p(h-)
+Z'K 4 (h)Z/n = X 74 (A ) T ()Y 24 (Rt ),

Yyp(h) = Z'K_(h-)Y/n—"Yz ,(h-)TZ,(h) Yy p(h-)
+Z'K 4 (hi)Y /1= Xz (i) T, (h) Ty p(hy).

Therefore, the above representation gives

7~-Y,l/(h) - 7A-Y,V(h) - +Z,V(h)l;?Y,p(h)

= ) (hei Ay, (0) = A (h—; 3y, (h))

with
i (hoiy) = i) (o) — ) (ho)'y,

P (hsy) = i) () — ) (hy)'y.
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6.1 Hessian Matrix, Invertibility and Consistency

The estimators ,u(y) »(h), ﬂ$i7p(h), ﬂgip(h) and u(l/) »(h), are all standard (two-sample) local
polynomial estlmators without additional covariates, and therefore are well defined, with probability
approaching one, if the matrices I'_ ,(h) and I'; ,(h) are (asymptotically) invertible. This follows
from Lemma SA-1, and conventional results from the local polynomial literature (e.g., Fan and
Gijbels (1996)).

Therefore, the covariate-adjusted estimator 7y, (h) will be well defined in large samples, pro-
vided 4y ,(h) is well defined. The following lemma gives the probability limit of the two components

of 7yy7p(h).

Lemma SA-6 Let Assumptions SA-1, SA-2 and SA-3 hold. If nmin{h_,hy} — oo and max{h_,hi} —
0, then

Ly(h) =k (o} +0%,) +os(1),

Yyp(h) = K(EB[(Zi(0) — pz—(Xi)Yi(0)[Xi = 7] + B[(Zi(1) — pz (X)) Yi(D)[Xi = 7]) + 0p(1),

n—f/ K(u du_f/ K(u

By— =tz (T), Byy = Bz (T), 05 = 0% (7), 05, =05, (T), and f = f(7).

Proof of Lemma SA-6. Analogous to the proof of Lemma SA-1, which gives I‘_l o(h) =
(BT ()" + 05(1) = D=L + 0p(1) and T7L,(h) = (BT ,(h))) " + 0p(1) = T5L + op(1). In
particular, Markov inequality implies Z'K_(h_)Z/n = B[Z'K_(h_)Z/n] + op(1), TZ,7p(h_) =
B p(h )] + 0p(1), Yy p(h-) = B¥s_p(h-)] + 0p(1), Z'K (h4)Z/n = BZ'K, (hs)Z/n] +
op(1), Xz4p(he) = E[X 24 p(hy)] + op(1), Xz4p(hs) = B[X 24 p(hy)] + 0p(1). Next, changing
variables and taking limits as h — 0,

Tp(h) = E[Zi(0)Zi(0)|X; = 7] + E[Zi(1)Zi(1)'| X; = 7]
—py K L —ph— Py — NZ+’9,+ o A p”+,pl’/Z+a
= RVIZ:0)| X = 7] + RVIZi(1)[X; = 7] =k (0% +0%,).,

_ 0 _ o0 _ / _ /
where k_p, = f [*_ rp(u)K(u)du, kyp = [ [i rp(u)K(u)du and k = €jk_ ), = ejkp, and be-
causeI'_ ,eg = k_ , and I' ,eg = K ;, and hence I‘:’lp —p = €p, I‘Jr pR+p =epand k. pI‘lera p =
— ! -1
K=Ky Lyl p.
The second result is proved using the same arguments. I

The previous lemma shows that f‘p(h) is asymptotically invertible, given our assumptions, and

hence the covariate-adjusted sharp RD estimator 7y, (h) = Ty,,(h) — 7z, (h)¥y,(h) is well defined
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in large samples. Moreover, because 7y, (h) —p Ty, by Lemmas SA-2 and SA-3, 77, (h) —p 77,
by Lemmas SA-4 and SA-5, under the conditions of Lemma SA-6, we also obtain the following

lemma.

Lemma SA-7 Let Assumptions SA-1, SA-2 and SA-3 hold with o > p. Ifnmin{h1_+2”, hf‘Q"} —
oo and max{h_,hi} — 0, then

/
Tyw(h) —=p Ty, — [M(Zﬂ - u(Z”Z} Ty

with
vy = [0} + 0% ] [BIZi(0) - py (X))Yi(0)|Xi = 7] + B(Zi(1) — puy (X)) Yi(1)| X = 7]

where recall that py = py (T), pyy = py (%), 05 =0%_(Z), and 0%, = 0% (T).

Proof of Lemma SA-7. Follows directly from Lemmas SA-2-SA-6. I

6.2 Linear Representation
Using the fixed-n representation

%Y,I/(h) = %Y,V(h) - +Z,l/(h)l;?Y7p(h)

= W) (hes Ayp) — B (he; Ay (1)

with
A (hiy) = i) (h) — i) (k)
~(v) h: — ~ (V) h) — ~ (V) h /
iy (B y) = By () — gy (R)'y,
we have
7~'Y,1/(h) = SS,V(h)/VeC(BS,p(h))v
where
vle, 1
ssy(h) = _ = _ R vle,,
_7Y7p(h) ® V!el/ _7Y,p(h)
Bsp(h) =By p(hs) — Bg_ p(h-),
with

Bs—p(h) = By_,(h):Bz_,(M],  Bsip(h) = By (1) By ,(h)].
Recall that Byi’p(h), By+,p(h)7 Bzf,p(h) and Bz+,p(h) denote the one-sided RD regressions dis-

cussed previously.
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Furthermore, note that

Bs_,(h) = ——HLWP_,(1)S,  vee(Bs_,(h) = —

o, L1 ® H, ' (R)P_,(h)]S,

-5
>

Bssp(h) = ——HLWP, (1S vec(Bsp(h) = ——T11q © Hy ()P, ,(h)]S.

vnh P

Finally, by Lemma SA-7, it follows that

)

vle,
SS,V(h) —P SSy = ’
—vy ®@vle,

and therefore it is sufficient to study the asymptotic properties of 3 s+p(h) and ,BS,7p(h), under

the assumption of 7z, = 0 (pre-intervention covariates). Finally, we also define

16,5'—717(1') = [IBY—JJ('%.)’ﬁZ—,p(x)]? BS—F,p(w) - [/6Y+,p(x)7BZ+,p(x)]v

with the notation Bg_ , = Bg_ (%) and Bg, , = Bg ,(T), as above.

7 Inference Results

In this section we study the asymptotic properties of 7y, (h). First we derive the bias and variance
of the estimator, and then discuss bandwidth selection and distribution theory under the assumption
that 7z, = 0 (pre-intervention covariates). Note that our results do not impose any structure on
E[Y:(t)|Xi, Zi(t)], t € {0,1}, and hence 7y ,(h) has a generic best linear prediction interpretation.
7.1 Conditional Bias

We characterize the smoothing bias of Bs_m(h) and Bg +p(h), the main ingredients entering the

covariate-adjusted sharp RD estimator 7y, (h). Observe that

E[Bs_ p(h)IX] = L+ ® H, ' ()T}, (h) Ry (h) K- (h)]E[S(0)[X] /n,

E[Bs p(W)IX] = T+ ® H, ' ()T, () Ry (h) K1 (h)]E[S(1)[X] /n.

Lemma SA-8 Let assumptions SA-1, SA-2 and SA-3 hold with o > p + 2, and nh — oo and
h — 0. Then,

Elvec(Bs_,(h)|X]
= vee(Bs_p) + Lira @ Hy ()] [WPBs_pp () + WP B pi1 (h) + op(h**7)] |
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Elvec(Bs,.,(h))X]
= vec(ﬁs_hp) + [Iprd & H;l(h)] [hlerBg_i_’pﬁD(h) + h2+pB5+7p,p+1(h) + 0p(h2+p)] ,

where
(1+a) (14a)
-t S— -1 Hs_
BS_7p7a(h) - [Il+d ® rf}p(h>ﬁ_7p,a(h)]m —P Bs_7p’a = [I].er ® I‘77p,l9—7p,a}m’
g+a) “g+a)
Bstpalh) = lita ® Fl,lp(h)ﬂtp,a(h)](lTJra)! —p Botpa=M4a @ T7 094 4 (1 J:ra)!'

Proof of Lemma SA-8. Follows exactly as in Lemma SA-4 but now using S instead of Z as

outcome variable. 1

7.2 Conditional Variance

We characterize the exact, fixed-n (conditional) variance formulas of the main ingredients en-
tering the covariate-adjusted sharp RD estimator 7y, (h). These terms are V[Bsip(h)\X] and
ViBs p(MIX].

Lemma SA-9 Let assumptions SA-1, SA-2 and SA-3 hold, and nh — oo and h — 0. Then,

Vlvec(Bs_ ,(h))|X]

= [Liva ® H, (T2 (W) Ry (1) K- ()] Es— L1140 © K- ()R (AT, () H, (h)] /n®

_ % ya @ Hy  (B)][Lg © P p(B)] S Tipa @ P y(h)][Tia @ Hy L (h)],
Vlvee(Bs.s ,(h))|X]

= [T ® H (WD () Ry () Ko (1)) S [T @ Ko ()R, (DT (W) H,  (R)]

1

= %[Iud RH (1)][T14q ® Py p(h)]Bs4[T14a ® Pop(h)|[Li4q @ Hy ' ()],

with
nh(ly g @ Hy(h)]V[vee(Bs_ ,(h)|X][T11q @ Hp(h)] —p 14 @ TZL)1¥s p[I g @T7L],
nh{ly g @ Hy(h)]V[vee(Bg ,(h)|X][T11a @ Hp(h)] —p T14a @ T15 )Wy p[lig ©T7L],

where

0
Us—p = f(2) [U%— ®/ rp(wrp(u)K(u)*du| , 0% =o§ (z) = V[Si(0)|X; = 1],

—00
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and

Wi, = (2) [aém / T ) K@?du|, 0%y = 0% (2) = VISi(1)]|Xi = 4.

Proof of Lemma SA-9. Follows exactly as in Lemma SA-5 but now using S instead of Z as

outcome variable.

7.3 Convergence Rates

In the rest of Part I (Sharp RD designs) of this supplemental appendix, we assume the conditions
of Lemmas SA-2-SA-9 hold, unless explicitly noted otherwise.
The results above imply that

0 © Hy())(Bs_,(h) — Bs_,) = O (W i 1) ,

T & 0] B ()~ Bsy) = O (W47 4

~ B
>
\/

)

and therefore, because p,,’ (z) = u(y)

(Z) by assumption,

Z¥
Typ(h) =7y, = Tyu(h) =Ty, — 77,(h)Fy,(h)
1
_ 14+p—v _
= or (s ) =)

Furthermore, we have

(v - M- » 1

e . D s . 1
M@Z,p(h;’yy,p(h)) — u@lm(fyyvp(h)) = Op <h1+p + W) — op(1),

where
iy () =) () — ) )y e () =)~ ub

I i) = Ly () = ALy () = ¥, =

7.4 Bias Approximation

We give the bias approximations for each of the estimators, under the conditions imposed above

(Lemmas SA-1-SA-9).
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7.4.1 Standard Sharp RD Estimator

We have
E[ﬂg}j),,p(h)]X] - Ngjz = h1+p7VBY7,I/,p(h) + OP(hlerfu)’
E[ﬂ@np(hﬂx] - '“’(YVJ)r = WP By gy p(h) + op(R1TP7Y),
where
H§/1+p) Hg/lﬂo)
By —uplh) = i Py ()0 (h) sy —p By = Vel D0
M§/1+p) Mg/l—&-P)
By o) = ey T p(0+p(h) iy —p By =Vl T B s

where we set 9_ ,(h) :=9_ ,,(h), F1 p(h) =04 pp(h), 9-p :=0_p, and 4y, 1= V4 ), to save
notation.

Therefore,
Elfy,(h)[X] -7, = hlfp*”l?m,u,p(m) - hljpinY—,u,p(h,) + op(max{h*P7, hiﬂ’*”}).

7.4.2 Covariate-Adjusted Sharp RD Estimator

Using the linear approximation, we define
Bias|y) , (1)) = E[sf  [vec(Bs_, (k) — vec(Bs_ ) IIX],

Bias[fiy?) (1)) = Elsk,, [vec(Bg, (b)) — vee(Bs, ,)IIX],

and therefore
Bias[iy)  (h)] = WP Bs_, »(h) + op(hP7Y),

Bias[ily) ,(h)] = W'TP " Bs_ . p(h) + op(P7),

where

Bs— v p(h) = Si@,uBSf,p(h) —p Bs—vp = Si?,uBSf,pv
BS+,V,p(h) = Si?,yBS—i-,p(h) —p Bs—vp= Sg,uBS+,pa

where we set Bg_ ,(h) := Bs_,,(h), Bsip(h) == Bsy pp(h), Bs—p == Bs_,,, and Bgy ), =

BS+7p7p'
Therefore, we define

Bias[Fy,, (h)] = B[s’s,, [vec(Bg,(h)) — vec(Bg,)]IX]
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and, using the results above,
Bias[7y.y ()] = WP By () — WP Bs_yp(ho) + op(max h2P~7, n27Y),

7.5 Variance Approximation

We give the variance approximations for each of the estimators, under the conditions imposed above
(Lemmas SA-1-SA-9).

7.5.1 Standard Sharp RD Estimator

We have . .
Vityy(h)[X] = WVY—J/@(’L) + WVY+,u,p(h+)
with

Vy_up(h) = vPhel T (h)R,(h)K_(h)Sy_K_(h)R,(h)IL'Z} (h)e, /n
= ve,P_,(h)Zy_P_,(h)e,,

Vyiwp(h) = vI2he,DTL(Ry(h) Ky (h) Sy Ko (MR, (ML, (h)ey /n
= PPy, (M)Sy Py p(h) e,

Furthermore, we have

2 /-1 -1 .
VY—J/’P(h‘) —P V! eyrf,pqu_yprf,pey = VY—,V,]H

Wyt wp(h) —p V!QGLFI;‘I’thFl}peV = Wivp
7.5.2 Covariate-Adjusted Sharp RD Estimator

Using the linear approximation, we define

Var[Fy,,(h)] = Vs, [vec(Bg,(h)) — vec(Bg,)]|X]
1 1
ohiT Vs—pp(h-) + WVSJr,u,p(M)

with
Vs—wp(h) =85, [Lira@P_,(h)]Bs-[I14a @ P p(h) ]85,

Vst wp(h) =85, [T14a @ Py p(h)] sy [Tipa @ Py p(h)']ss,.

Furthermore,
Vs—wp(h) —=p s, Mg @ T Ws_ i g @ T Jsg, = Vo by,
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VS+,V,p(h) —P S{S7V[Il+d ® I‘J_r,lp]lI’S—hp[Iler ® FI}p]SSW =: VS—I—,I/,pa

7.6 MSE Expansions

Using the derivations above, we give asymptotic MSE expansions and optimal bandwidth choices
for the estimators considered. All the expressions in this section are justified as asymptotic approx-
imations under the conditions nh'T? — oo and h — 0, with v < p, and the assumptions imposed
throughout. We discuss the estimation of the unknown constants in the following sections, where
these constants are also used for bias correction and standard error estimation.

For related results see Imbens and Kalyanaraman (2012), Calonico, Cattaneo, and Titiunik
(2014b), Arai and Ichimura (2018), and references therein.

7.6.1 Standard Sharp RD Estimator
e MSE expansion: One-sided. We have:

1

By, (h) =y P1X) = B2 IBY () {1+ 0p(D)} 4 s Vy—w(h)

= WUIBY (U o)) 4 g W1+ 02(1)

and

~ (v v —v 1
Bl (h) = n)X] = W28 ({1 + 02 (1)} + —m W (B)

1
= h2(1+P—V)B}2,+’V’p{1 + O]p(].)} + WVY+7V:p{1 + O]P(l)}

Under the additional assumption that By_ ,, # 0 and By, , # 0, we obtain

1 1
1+2v Vy_,,/n|™™ 1420 Vyi,p/n|™™
hY*,I/,p = ) and hYJr,V,p = 2
20+p-v) By_,, 20+p—v) By, ,,

e MSE expansion: Sum/Difference. Let h = hy = h_. Then, we have:

(2, (h) £ i) (k) — (u) £ p$))2(X]

1
= WP By p(h) & By p ()] {1+ 0p(1)} +

nh1+21/

. 1
= p2try) [By +vp £ BYf,l/,p]2 {1+ op(1)} + nhl+t2r Vy—vp + Vyswpl {1 +o0p(1)}

Wy —vp(h) + Vy i v p(h)]

Under the additional assumption that By , , & By_ ., # 0, we obtain

1
1+2v (Vy—wpt+ Vriup)/n] 3
2(l+p—v) Bytwp—By—up)?

)

hAY,V,p —
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1
1+2v  (Vy—wp+ Vyiwp)/n|st2

bovp = 2(1+p—v) Bytwp+By-up)?

7.6.2 Covariate-Adjusted Sharp RD Estimator

e MSE expansion: One-sided. We define
MSE[RY)  (h)] = E(sy,[vec(Bs_,(h)) — vec(Bs_,))?X],
MSE[aY) ()] = El(shy[vec(Bs ,(h)) — vec(Bsy ,)])*X]-
Then, we have:
MSETY) ()] = W02 IBL_ ()1 + 0p(1)} + Vs ()
= OB (1 0p(D} 4 Vs {1+ op(1))

and

W . 1
MSE[M§/i’p(h)] = p2(+p )B%’—i-,y,p(h){l +op(1)} + WVS+,u,p(h)

. 1
= p2Fe )B?@Jr,u,p{l +op(1)} + WVSJr,u,p{l +op(1)}

Under the additional assumption that Bs_ , , # 0 and Bg4 ., # 0, we obtain

_1 _1
b _ 1+2v Vs_pp/n|™™ and b _ 1420 Vsppp/n|™™
T2 B, T |2 p-v) B, |

e MSE expansion: Sum/Difference. Let h = hy = h_. We define

MSE[R) (k) £ 3 (h)] = B(syy[vec(Bs,, () £ vec(B,))2[X]

).

Then, we have:
MSE[") ,(h) £ i ()]
Hyyp Hy~ p
» 1
= W2 (B () £ Bs—wp(R)]? {1+ 0p(1)} + YRR Vs—wp(h) + Vsiup(h)]

_ 1
= h2(1+p v) [BS+,y,p + BS—,I/,p]2 {1 + OP(]')} + nh1+2y [VS_J’J) + VS"FWJJ] {1 + OP(]")}
Under the additional assumption that Bsy , , & Bs— ., # 0, we obtain

1
1+2v (Vs—upt+ Vsiup)/n|3+2
2(L+p—v) Bstwp —Bs—up)?

Y

bAS,lI,p =
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1
1+2v (Vs—upt+ Vsiup)/n|3+2

bosep = 20+p—v) (Bstpp+Bs—pp)?

Note that
MSE[Fy, (k)] = MSE[y} (k) — iy, (h)].
7.7 Bias Correction
Using the derivations above, we give bias-correction formulas for the estimators considered. Recall
that v < p < q.
7.7.1 Standard Sharp RD Estimator

For completeness, we present first the bias-correction for the sharp RD estimator without covariates.
This case was already analyzed in detail by Calonico, Cattaneo, and Titiunik (2014b) and Calonico,
Cattaneo, and Farrell (2018, 2019). The bias-corrected estimator in sharp RD designs without

covariates is

%]}D/Cyl’(h’ b) = %le’(h) - |:h}i‘+p_VBY+7V’p:Q(h+7 b+) - h1—+p_VBAY7,V,p7q(h—) b—) 3

where (145)
~(1+p
A . -1 :u’Yf,q (b)
BY_:va)q(h’ b) - V!e;rfyp(h)ﬂfyp(h) (1 +p)' ?
~ (1+p)
5 _ -1 fry i q(0)
BYJr,V,p,q(ha b) = V!e;]‘-‘-i-,p(h’)lﬂ‘f’yp(h) 1+p)! .
Recall that 7y, (h) can be written as
> h — - () h) — - () h
TYaV( ) /'I/Y—Q—’p( ) /’LY—J)( )
1 1
= e, | ——H ! P - _H Y )P_,(h)|Y
ve, [nlﬂhiﬂ 14 (hy) +,p(h+) n1/2h1,/2 P (h-) ,p(h )
1 1
= |——— e P - ————ve,P_,(h )| Y
[n1/2hi/2+yyelj +7P(h+) n1/2h£/2+yyeu ,P(h )

with

P_,(h) = VAT ZL (MR, (h)K_(h)/V/n,
P ,(h) = VAT L (BR,(h) Ky (h)/V/n.

The bias-corrected standard sharp RD estimator can also be represented in an analogous way.

Setting p = h/b, we have

%%V(h’ b) = ﬂg/y):j;,q(h-i-v b+) - ﬂgﬁl):;’q(h—a b—)
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with

AP (o) = ) (h) — R By g (D)

~ (1+p) b
= vie H, (T~} (WRy(h)K-(h)Y fn — h'*P~"01el T ()0 (h) ‘Z fp() ,)
= Ve[ H, (W7 (h) [Ry(h)K_(h) = p 70— y(h)er Ty ()R, (0) K- (b)] Y/n
1 bc
- Wye P—pq(h7b>Y

with

P, (h,b) = VAT Z(h) [Ry(h)K_(h) — p"*PO_ ,(h)e} L= (0)Rq(b)K_(b)] /V/n,

=P
and, similarly,

v)bc 1
P (hb) = ————yle/ P

Y+,pq nl/2pl/2+v +pq(h’ b)Y

with

P, (A, b) = VAT L (h) [Rp(h) Ky (k) — p' PO (R)el T (0)Rq(0) K (b)] /.

Therefore,

1

~be 1 c
73, (h, b) = vle], [Pb (hy,by) — IR 2 pal

nl/th/z-‘rV +,p,q h b )] Y

7.7.2 Covariate-Adjusted Sharp RD Estimator

The bias-corrected covariate-adjusted sharp RD estimator is

~bc (h b) =7y, (h) - [h}%er_VBSJr,p,q(th by) - hljp_VBSﬁp,q(h—v b))l

5 o (1+p (b)

By pqa(h,b) =sg,(h) [I1q ® I‘:L(h)ﬂjp(h)} i p)' ’
Ase o)

. , B +

Bt pg(hb) = sg,(h) [T @ T7L (R)04 5 (h)] . +qp)‘

Recall that

Fyu(h) = Ty (h) = 72, (0) Ty, (h) = 37 (e Ay p(h) — i) (h_;Fy,(h)
and hence

75, (,b) = A0 (hys Ay, (h) — A0 (ho; Fyp ()

28



with .
ﬂ&”)_b;(h; Fyp(h)) = WSS,V(h)/[IHd ® Plic,p,q(ha b)IS,

~|\V)DC ~ 1 C
Mgfj)tb,p(h; Yy p(h)) = WSS,u(h)/[Il—‘rd ® P, (h,b)]S.

Therefore,

1

~be 1 c
Vo (hb) =ssu(h) | —— 5 [T11a @ P, o (ha, b1)] - 12, /2
n _

bc
nl/2p /2 Tira @ P, (R b )] | S.

7.8 Distributional Approximations

We study the classical and the robust bias-corrected standardized statistics based on the three
estimators considered in the paper. We establish the asymptotic normality of the statistics allowing
for (but nor requiring that) p = h/b — 0, and hence our results depart from the traditional bias-
correction approach in the nonparametrics literature; see Calonico, Cattaneo, and Titiunik (2014b)

and Calonico, Cattaneo, and Farrell (2018, 2019) for more discussion.

7.8.1 Standard Sharp RD Estimator

The two standardized statistics are:

tvo(h) — Ty, ?bcyhb—TV
) =t ey - D

Y[ty (h)[X] VI, (R, b)|X]

TY,V (h) =

where
1

. 1
V[7y,(h)[X] = 1+2VVY wplh) + 1+2VVY+:V7P(h+)7
nh= nhy

Vy_ o p(h) = 12e,P_,(h)Zy_P_ ,(h)e,,
Vy+wp(h) = V!2e§/P+,p(h)EYJrP-hp(h)/em

and
V[Abc (h b) |X] h1+21/ VYf VD, q(h—7 b—) h1+21/ VYJr VLD, q(h+7 b+)7

Vpe h,b) = v1%e, P (h,b)Zy_P®, (h,b)e,,

k) 7p q(

VYJr v,p, q(h b) - V'z IPbC

be (B D)Sy P, (hb)e,.

As shown above, Vy— , p(h—) <p L, Vv iy p(hy) <p L,V o (b b) =<p land V3%, |, (h,b) <p
1, provided lim,, oo max{p_, p, } < oo and the other assumptions and bandwidth conditions hold.
The following lemma gives asymptotic normality of the standardized statistics, and make precise

the assumptions and bandwidth conditions required.
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Lemma SA-10 Let assumptions SA-1, SA-2 and SA-3 hold with o > 1+q, andnmin{h{““, h}r“”} —
00.
(1) If nh**® — 0 and nhip+3 — 0, then

Ty, (h) —4 N(0,1).
(2) If nh®*3 max{h? bz_(q_p)} — 0, nhipJr3 max{h? ,bi(q_p)} — 0 and lim, o max{p_, p, } < 00,

then
T (h b) —4 N(0,1).

Proof of Lemma SA-10. This theorem is an special case of lemma SA-11 below (i.e., when

covariates are not included).

7.8.2 Covariate-Adjusted Sharp RD Estimator

The two standardized statistics are:

R ALt TR F T NS L L
7 Var[7y, (h)] 7 Var[TYV(h b)]
where ) )
Var[7y, (h)] = WVS—W@(}L) + WV3+,u7p(h+)»
Vs—up(h) = st*,y[Iler @ P_,(h)]Bs— 14 ® P_p(h)]ssy,
Vsiwp(h) =85, [Tira @ Pip(h)]Bsi[Tipa @ Py p(h)]ss
and

1 1

Var[%}})/fu (h7 b)] h1+21/ VS— ,V,D, q(hfv b*) h1+21, VS—{—,V,p q(thv b+)7

VE L pa(hib) =85, Mia @ P (h,b)]Zs_[Ti1q @ P>, (h,b)]ss,

VS—l— v,p, q(h b) - SS V[Il+d ® P+ D, q(h b)]23+ [Il-i-d ® P+ D, q(hv b)/]ss,l/'

As showin above, Vs, p(h) <p 1, Vsiup(h) <p 1, V&, (h,b) <p 1 and Vg5, (h,b) <p 1,
provided lim,, .o max{p_,p,} < oo and the other assumptions and bandwidth conditions hold.
The following lemma gives asymptotic normality of the standardized statistics, and make precise

the assumptions and bandwidth conditions required.

Lemma SA-11 Let assumptions SA-1, SA-2 and SA-3 hold with 0 > 1+q, and nmin{h' ™" h_li_+2”} —

Q.
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(1) If nh**® — 0 and nhip+3 — 0, then

Ts,(h) —4 N(0,1).

(2) If nh* 3 max{h? bz_(q_p)} — 0, nhipJr3 max{h? ,bi(q_p)} — 0 and lim, o max{p_, p, } < 00,
then
T, (h,b) —4 N(0,1).

Proof of Lemma SA-11. Both parts follow from the Linderberg-Feller’s triangular array
central limit theorem. Here we prove only part (2), as part (1) is analogous. Only for simplicity
we assume that h=h_ =hy and b=5b_ = b,.

First, recall that 7y, (h) = 7y, (h) — 7y, — 77, (h)' ¥y, (h), and hence define

7%, (h,b) = 7%%,(h,b) — — 75,0, b) Ty, (h),

where 7% 7, (h, b) denotes the bias-corrected standard RD estimator using the additional covariates

as outcome variables (c.f., 735, (h,b)). Then, since 7z, = 0 by assumption,

Abc ~bc !
Tgﬁ,(h, b) — (h b) TZ l/(h7 b) 7Y,P + OIP(l)
Var[ryy(h b)]

because nh1+2vvar[Tyy(h b)] <p 1 and \/WAbc (0, b) [Fy,(h) — vy, ] = Op(1)op(1) = op(1).
Second, let
HPe 2 bc ~bc
Bspq,b) = B pg(hr;bi) = Bs_pq(h—b-),

B alht) = —=H, (P, (1)S.
A bc 1
B5pahD) = =H, (WP, (WS,

and therefore e .
SfS,VBSap»q(h’ b> - E[S{S' V’BS p,q(h7 b) ’X]

Var[TYV(h b)]

TSb,CV(ha b) = + OP(l)v

because, using the previous results and the structure of the bias-corrected estimator, we have

~bc
E[Sg‘,yﬁs,p,q(ha b)‘X] -T
Var[?t{}:'y(h, b)]

Op (\/ﬁh1/2+p+2) +Op (\/ﬁh1/2+1+pb(q_p)) — op(1).
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Finally, we have

s, [ B0 b) — BIB,, , (1, b) X]|

Var[%t{/‘fy(h, b)]

T35 (h,b) = +op(1) —a N(0,1)

using a triangular array CLT for mean-zero variance-one independent random variables, provided

that nh — oco. 1

7.9 Variance Estimation

The only unknown matrices in the asymptotic variance formulas derived above are:
e Standard Estimator: ¥y_ = V[Y(0)|X] and ¥y = V[Y(1)|X].
e Covariate-Adjusted Estimator: ¥g_ = V[S(0)|X] and ¥ = V[S(1)|X].

All these matrices are assumed to be diagonal matrices, since we impose conditional het-
eroskedasticity of unknown form. In the following section we discuss the case where these matrices
are block diagonal, that is, under clustered data, which requires only a straightforward extension
of the methodological work outlined in this appendix.

In the heteroskedastic case, each diagonal element would contain the unit’s specific conditional
variance terms for units to the left of the cutoff (controls) and for units to the right of the cutoff
(treatments). Thus, simple plug-in variance estimators can be constructed using estimated resid-
uals, as it is common in heteroskedastic linear model settings. In this section we describe this
approach in some detail.

We consider two alternative type of standard error estimators, based on either a Nearest Neigh-
bor (NN) and plug-in residuals (PR) approach. For i = 1,2,--- ,n, define the “estimated” residuals

as follows.

e Nearest Neighbor (NN) approach:

J

. _ J 1

ev—i(J) = 1(Xi < T)y/ T Vi— 7 ZVe,,j(i) ;
=1

J
. N J 1
Evii(d) = UXi = T)y T11 Vi— 7 szﬂ.(i) ;
j=1

where V € {Y, Z1, Zo,--- , Zg}, and £ () is the index of the j-th closest unit to unit ¢ among
{X;: X; >z} and ¢_ ;(i) is the index of the j-th closest unit to unit ¢ among {X; : X; < &},

and J denotes a (fixed) the number of neighbors chosen.

e Plug-in Residuals (PR) approach:

éVf,p,i(h) = ]I(Xi < i)\/w—,p,z’(vi - rp(Xi - i)/BV_,p(h))a
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vy pilh) = UX; > 2)\ /01 pi(Vi — rp(Xi — 2)' By (1),

where again V € {Y, Z1, Zs,--- , Z4} is a placeholder for the outcome variable used, and the
additional weights {(w_ pj, w4 pi) : @ = 1,2,--- ,n} are introduced to handle the different
variants of heteroskedasticity-robust asymptotic variance constructions (e.g., Long and Ervin

(2000), MacKinnon (2012), and references therein). Typical examples of these weights are

HC,y HCy HC, HC;
w ; 1 N 1 1
—,Dyt N_—2tr(Q— p)+tr(Q—-,Q—p) eiQ_ pe; (e[Q_ pe;)?
Wt s 1 Ny 1 1
bt Ny —2tr(Q+ p)+tr(Q+,pQ+ ,p) e Q+ pei (e;Q+ pei)?
where . "
N_=) 1(Xi<z) and Ny=) 1X;>2),
=1 =1

and (Q— p, Q4 p) denote the corresponding “projection” matrices used to obtain the estimated

residuals,
Q_, =R,(WTTLR,(WK_(h)/n,  Qup=Ry(WTTLR, (W) K (h)/n,

and e€;Q_e and eQ.e; are the corresponding i-th diagonal element.

7.9.1 Standard Sharp RD Estimator

Define the estimators

and

Sy (J) = diag(e¥_ (1), 8% _ (), &5 .(J)),

zA:Y—l-(']) = dia’g(égf—‘,—,l(‘])’ é21/—‘,—,2(‘])7 o aéQY—&—,n(J))a

2Y*,p(h) = diag(é%—,p,l(h)’ é%’—,p,Q(h)v T 7é%’—,p,n(h))7

Sy 4p(h) = diag(Ey 1 (h), &5, pa(h), - &y n(R)).

e Undersmoothing NN Variance Estimator:

N 1 - 1 .
V[Tqu(h)\X} = WVY—,u,p(h—) =+ WVY+,V,p(h+)>

Vy—wplh) = e, P_ () Sy _(1)P_y(h)e,.

Vy pup(h) = e Py () Sy 4 ()P p(h) e,
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e Undersmoothing PR Variance Estimator:

N 1 A 1 .
V[7y,(h)|[X] = WVYf,u,p(h—) + WVYJr,u,p(th)a

Vy_wp(h) =2l P_(h)Sy_ ,(h)P_,(h)e,,

f)Y+,V,p(h) = V!292P+,p(h)2Y+,p(h)P+,p(h),eu

e Robust Bias-Correction NN Variance Estimator:

V[Abc (h b) |X] h1+2]/ VY— VLD, q(h*’ b*) h1+27/ VY+ v,p, q(h+7 b+)a
VY, pq(h,b) = u!2eLPE°,p’q(h, b)Ey_ ()P, (h,b)e
VY+ qu(hvb) = Pg—cp q(h) b)2Y+(J)P1—)i-Cp q(hab)/e

e Robust Bias-Correction PR Variance Estimator:

. 1

V[ Y (h b) |X] h1+2y VYf VLD, q(h—’ b—) nhi—i—?zx VY+ v,p, q(h+7 b+)7
V(B b) = v1%e, P> (h,b)Sy_ o (R)P™, (h,b)e,
VYJr v,p, q(h7 b) = Pljrcp q(h7 b)ﬁ)Y-i-,Q(h)bep q(h7 b)/eV'

The following lemma gives the consistency of these asymptotic variance estimators.

Lemma SA-12 Suppose the conditions of Lemma SA-10 hold. If, in addition, maxi<i<yn |w— pi| =

Op(1) and maxi<i<n |wipi| = Op(1), and 0% (x) and 0%_(x) are Lipschitz continuous, then

Vv, X " Y W b)X] Vv, (0)[X] VIS, (h, b)[X]

The first part of the lemma was proven in Calonico, Cattaneo, and Titiunik (2014b), while the
second part follows directly from well known results in the local polynomial literature (e.g., Fan

and Gijbels (1996)). We do not include the proof to conserve same space.
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7.9.2 Covariate-Adjusted Sharp RD Estimator

Define the estimators
[ Sy () Bz (D) By (D) o Syg ()
2Zly—(‘]) 2Z1Z1—(J) Ezle—(‘]) EZIZd—(']
SS,(J) = EZQY_(J) 2Z2Z1—(J) z:ZzZ2—(J) T EZ2Zd—(J)
| Szyv-()) Bzz,-() Bzuz-(J) o Bzz,- () |
and o 5 5 5 _
Syv+()) Byvz+(J) Byze(J) Yy z4+(J)
Yzv+(J) Bziz+(J) Xziz,4(J) ¥22,4(J)
2S—&—(J) = EZQY+(J) 2Z2Z1-i-(‘] 22222+(J) T 2Z2Zd-l-(J)
| Szyvi () Bz (D) Bzuz,40(J) 2,2+ (J) |
, Zq}, are n X n matrices with

where the matrices Sy _(J) and Sy (J), V,W € {Y, Zy, Zo, - --

generic (i, 7)-th elements, respectively,
= ]I(XZ' < a?)]l(Xj < :f:)]l(z = j)é‘V_J(J)F:‘W_,i(J),

[Evw-()],;
[Evw+ ()], = UXi > D)X, > )16 = j)evri())ew+i(]),

forall 1 <4i,57 <mn, and for all VW € {Y, Z1,Zs,--- , Zq}

Similarly, define the estimators
[ Syy p(h) Svzph) Svzp(h) Sy za-p(h) |
z:Z1Y* p(h) 23Z1Z1*7p(h) zzlzzﬁp(h) : Ezlzdﬂp(h)
ES—,p(h) = Ezzy—,p(h) 222Z1—,p(h) EzzZz—vp(h) T zZde—,p(h)
| S2v-p(h) Tzuz-p(h) Bz,z,-ph) - Tz p(h) |
and . . . ) )
2YY+,p(h) 2YZlJr,p(h) EYZer,p(h) EYZdJr,p(h)
Yzv+ph) Bzizi4ph) Xz 254(h) X2 24+ p(h)
25‘4_7])(}&) = z]Z2Y-|-,p(h) Z]Z2Z1-|-,p(h) 2Z222+,p(h) ZZQZd-l-,p(h)
L ide+’p(h) i)ZdZH-,p(h) Ezdzz-&-m(h) EZdZLH-,P(h) ]

where the matrices f]vw,’p(h) and ZA]VWJF’I,(h), VW € {Y,Z1,Zs,--- ,Z4}, are n X n matrices
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with generic (7, j)-th elements, respectively,

Bvwp(h)], = WX < DX <21 = v palh)ew—p(h),

Bvwep(h)], = 10X 2 )1 > D)1 = v pi(Wews s (h),

for all 1 <i,57 <mn, and for all VW € {Y, Zy, Zs,--- , Z4}.

e Undersmoothing NN Variance Estimator:

. 1 . 1.
Var[TY,V(h)} = mV@Lj,,ﬂ»,,(h) + WVSH»,V,p(h)?

f}Sf,u,p(h) = SS,u(h),[IH-d ® P,’p(h,)]f}sf(zf) [Il+d b2y P,7p(h,)l]SS7y(h),
Vsiwp() =ss,(0) [Ti1g @ Py p(hy)]Bsy () Ti4q © Py p(hy)]ss,(h).

e Undersmoothing PR Variance Estimator:
N 1 - 1 .
Var[TYJ/(h)} = WVS_WJ)(II) + mVS-hmp(h),
f)s,’,,’p(h) = SS,V<h)/[Il+d ® P—,p(h—)]isf,pm—)[IHd ® P—,p(h—)/]sS,V(h)7

Vst wp(h) =85 () Tig © Py p(ho)]Bss (b ) lia © Py p(ho) s, (h).

e Robust Bias-Correction NN Variance Estimator:

\V/ar[?t{/cl,(h, b)] = — VE°

1
h1+2u —,V\D, q(h7 b) + h1+2 VSJr VD, q(h b),
+

VS wpg(hyb) = 85, (h) [T1g @ PP (he b_)[ S5 () [T1a @ PP (he,b-) ]85, (h),

Vstwpa(Bb) =85, (h) [Lipa @ P, (A, 01)] S () [Lira ® P o (hy, b4 )]s, (h).

Pq

e Robust Bias-Correction PR Variance Estimator:
N 1

Var[Tl{fu(hv b)] h1+2]/ VS VLD, q(hv b) h1+2 VSJr WDy q(h b)
+

V —,U,D, q(ha b) = SS,V(h) [Il-‘rd ® P— D, q(h,, bf)]ﬁ]S—,q(h )[Il+d ® P— D, q(h*’ b*)/]ss,l/(h)a

Vsiwpqa(h,b) =s5,(h) [Ti4q @ PP, (7, 04)| B g(hy) Ti4a @ P, o (hs, b1) ]85, (h).

The following lemma gives the consistency of these asymptotic variance estimators.
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Lemma SA-13 Suppose the conditions of Lemma SA-11 hold. If, in addition, maxj<i<p |w— ;| =

Op(1) and maxi<i<p |wii| = Op(1), and 0%, (x) and o%_(x) are Lipschitz continuous, then

\v/ar[%m,(h)]
Var[7y,,(h)]]

Var[fy, (h)] Var[7}%, (b, b)] Var[7}¢, (b, b)]

1 1 _— 1 —_—
TP Varfy, ()] T VarBE, (b)) T Variy, (b, b)]

—p 1.

The proof of this result is also standard. For example, the first result reduces to showing
IRy (b)Y K_ (W) Syw— (1)K (R)Ry(h) — Ry(h) K (h) Sy K- (h)Ry(h)]| = o (n).

Ry () K () Sy (VK ()R (k) — Ry (1)K (0) Sy K ()R ()| = 05(m),
Sy = CoV(0), WO)IX], Sy = CoulV(1), W(1)/X],
VW € {KZI,ZQ,“' ,Zd},

which can be established using bounding calculations under the assumptions imposed. The other

results are proven the same way.

7.10 Extension to Clustered Data

As discussed in the main text, it is straightforward to extend the results above to the case where
the data exhibits a clustered structured. All the derivations and results obtained above remain
valid, with the only exception of the asymptotic variance formulas, which now would depend on
the particular form of clustering. In this case, the asymptotics are conducted assuming that the
number of clusters, G, grows (G — o) satisfying the usual asymptotic restriction Gh — oco. For a
review on cluster-robust inference see Cameron and Miller (2015).

For brevity, in this section we only describe the asymptotic variance estimators with clustering,
which are now implemented in the upgraded versions of the Stata and R software described in
Calonico, Cattaneo, and Titiunik (2014a, 2015). Specifically, we assume that each unit ¢ belongs
to one (and only one) cluster g, and let G(i) = ¢ for all units ¢ = 1,2,--- ,n and all clusters
g=1,2,--- ,G. Define

G N.-1 G Np-1
YT GOIN —1-p YTPTGCIN, 1 p

The clustered-consistent variance estimators are as follows. We recycle notation for convenience,
and to emphasize the nesting of the heteroskedasticity-robust estimators into the cluster-robust

ones.

7.10.1 Standard Sharp RD Estimator

Redefine the matrices Xy _(J) and Xy (.J), respectively, to now have generic (i, j)-th elements

By ()], = UXi < 2)U(X; < 2)UG(E) = G(7)éy—i(J)ey—a(J),

v
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1<4,j<n.

Similarly, redefine the matrices 3y ,(h) and 3y, ,(h), respectively, to now have generic (i, j)-th

elements
[Bvop()] = UK < 2)UX; < DUGE) = GG)ev—palW)ev—py(h),
By ipB)], = 10X = 2K 2 2UGE) = G0))ev+pih)evps (h),
1<i,j<n.

With these redefinitions, the clustered-robust variance estimators are as above. In particu-
lar, if each cluster has one observation, then the estimators reduce to the heteroskedastic-robust

estimators with w_,; = w4 p; =1foralli =1,2,--- ,n.

7.10.2 Covariate-Adjusted Sharp RD Estimator

Redefine the matrices By _(J) and Zyy4 (J), respectively, to now have generic (i, j)-th elements

[Bvw-(N)];; = UXi < D)X < D)NG() = G(5)ev—i(J)ew—i(J),

Svw ()], = 10X > DX > DUGE) = GU)ev4 i (Dews (),

1§Za]§na V7W€{KZ17Z27"'7Zd}‘

Similarly, redefine the matrices Sy ,(h) and Sy ,(h), respectively, to now have generic (i, §)-

th elements

= 1(X; <2)UX; <2)UG(1) = G(4))ev—pi(h)ew—p,;(h),

v

[2vwap(h)}

Bvwp(h)], = 1K = 21X > D)UGE) = GGev+pilh)ewps(h),
1§i,j§n, V,WG{KZl,ZQ,'”,Zd}.

With these redefinitions, the clustered-robust variance estimators are as above. In particu-
lar, if each cluster has one observation, then the estimators reduce to the heteroskedastic-robust

estimators with w_ ,; =wy ,; =1foralli=1,2,--- ,n.

8 Estimation using Treatment Interaction

Consider now the following treatment-interacted covariate-adjusted sharp RD estimator:

Ny, (h) = V!e/VIBY—l-,p(h’—) - V!elleY—,p(h’—i—)?
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i [ G ) | n

Oy _p(h) = ?Y_’p( ) = argmin Z 1(X; <2)(Yi —rp(X; —2)'b — Zy) Ky (X; — 7),
L ‘YY—’p(h‘) b€R1+p,‘Y€Rd i=1

§ [ B | n

0y+7p(h> = I?Y—hp( ) = argmin Z ](Xl > .f)(yvl — I'p(XZ' — i‘)/b — Z;’Y)QKh(XZ — i‘)
| Yvap(h) | bertiryerd S

In words, we study now the estimator that includes first order interactions between the treat-
ment variable T; and the additional covariates Z;. Using well known least-squares algebra, this is
equivalent to fitting the two separate “long” regressions éy,’p(h) and éer’p(h).

Using partitioned regression algebra, we have
By _p(h) =By _,(h) = By, (W)Ay_,(h),

IBYJr,p(h) = BYJr,p(h) - /BZJr,p(h)'?YJr,p(h)a

and
;yY—,p(h) = f‘:,lp(h)YY*,p(h)a
x/YJr,p(h) = f;}gy(h)i.#—l—,p(h)a
where
L ,(h) = ZK_(W)Z/n— Yz ,(h)TZL ()Y 7 ,(h),
Ly p(h) = ZK i (h)Z/n =X 74 p(R)TLL() Y 74 p(R),
Yy p(h) = ZK_(h)Y/n =Xz ,(h)TZ,(A) Yy ,(h),
Yyip(h) = 2K (h)Y/n— Yz ,(R)TTL (R) Yy p(h).
This gives
iy () = Fyo(h) = [35),(h4) 3y ph) = ) (b )Ty y(h0)]
with

py () =veB, (), BYL(h) =vie,By, (h).

8.1 Consistency and Identification

Recall that we showed that 7y, (h) —p 7y, and 7y, (h) —p Ty, under the conditions of Lemma
SA-7. In this section we show, under the same minimal continuity conditions, that 7y, (h) —p

Ny, # Ty, in general, and give a precise characterization of the probability limit.

Lemma SA-14 Let the conditions of Lemma SA-7 hold. Then,

77’Y,u(h) —P nY,l/ =TYy — [N(ZIJIFYY—F - M(ZIJZI’YY—] 9
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with
Yy =0, B[ (Z:(0) — py (X))Yi(0)| X; = 7],

vy = OB [(Za(1) — g (X)Yi(D)| X = 7]
where recall that py; = py (), py, = py (%), 65 =05 (), and 0%, = 0% (Z).

Proof of Lemma SA-14. We only prove the right-hand-side case (subindex “+”), since the

other case is identical. Recall that the partitioned regression representation gives

BYJr,p(h) = BYJr,p(h) - BZJr,p(h);)}YJr,p(h)’

where /@er’p(h) —p By;, by Lemmas SA-2 and SA-3, and BZJr,p(h) —p Bz p(h) by Lemmas
SA-4 and SA-5. Therefore, it remains to show that ¥y, ,(h) = f‘j_ip(h)'i'y4r7p(h) —P Yy -
First, proceeding as in Lemmas SA-1, we have f‘+’p(h) —p KO +- Second, proceeding analo-

gously, we also have
ZK.,(h)Y/n —p kE[Z;(1)Y;(1)| X; = 7]

and

TZ+7P(h)/I‘—T—,1p<h’)‘rY+7P(h) -P Nzﬂﬁr,prl,lp“ﬁt,pﬂy = Kpzty -

The last two results imply

Yyiph) = ZEK(W)Y/n =Yz p(h)TLL(0) Yy p(h)
= w4 B [(Zi(1) = pz(X)py 4 (Xi, Zi(1))| Xi = Z] + op(1).

This gives the final result. I

Example 1 If, in addition, we assume

E[Y;(0)|X; = x,Zi(0)] = &y _(x) + Zi(0)'dy -,
BlY;(1)|X; = z,Zi(1)] = &y (x) + Zi(1) oy 4,

which only needs to hold near the cutoff, we obtain the following result:

Nyy =TYpy — [H’(ZVIJY—I- - ﬂ(ZyZ,(SY—
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because

Yy = 0B [(Zi1) - pgy (X)Yi(D)| X = 7]
= 0, B[(Zi(1) = pye (X)) ny (X3, Zi(1)| X; = 7]
= 0 B [(Zi1) = gy (X)) €y (X0) + Zi(1) 8y1)| Xi = 7]
= 0, B [(Z:(1) — pz (X)) Zi(1)'| Xi = ] 8y 4
= Oyy,

and, analogously, vy_ = 6y _.

8.2 Demeaning Additional Regressors (v = 0)

Let v = 0. Consider now the following demeaned treatment-interacted covariate-adjusted sharp
RD estimator:

ﬁY,O(h) = e6BY+,p(h—) - e:)BY—p(h-l-)a

. ; n .
[,3 vl | _ argmin Y 1(X; < 3)(Y; — 1,(X; — )b — (Z; — Z)'7)’Kn(X; — T),
L ’YY—,p(h’) i b€R1+p,‘Y€Rd =1
BY—hpU”) _ . - ) = - Y N R, AYAY A=
] = argmin Z 1(X; > 2)(Y; —rp(Xs —2)'b — (Z; — Z)'v)*Kin(X; — ),
| Yyap(h) | beritryerd i

where

_ 1 &
:NZJI(h,gXi—:z«gm)zi, N =) 1(h_<X; -z <hy).

This implies that

_ _ 1 1
Z=7_+17, —p SHz-t Shz4
because
- 1
Z T < O)ZZ —P E”’Z—a

n
1
Z (0< Xi =2 < hi)Zi —>p Spyy

By standard least-squares algebra, we have

77Y,V(ll) = hY,O(h)_Z/(’VY—F,p(h-f—)_’yY—,p(h'—))7 ’.)/Y—,p(h) = ﬁY—,p(h% ;YY—l—,p(h) = ’7Y+,p(h)7

because only the first element of b (the intercept) is affected. Using the results in the previous
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sections, we obtain

fyo(h) = fye(h) — /(7Y+,p(h+) Yy p(h-))
(0)

Z
= %YO h |: Z+.p h-‘r 7Y+p(h+) Itl’me(h—)/;YY—,p(h—)] +Z,<;YY+,p(h+) _F.)/Y—,p(h—))

. ~ (0 o
= Fyol) = [(BZ),(he) = 2y () = (BgL,(ho) = 2)Fy (b))
Therefore, using the results from the previous subsection, and assuming 7z = pu,, —puy_ =0,
we obtain

flyo(h) = Tyo(h) + op(1) —p Ty,

provided that Z —p KRy =My .

Establishing a valid distributional approximation, and other higher-order asymptotic results, for
the estimator 7}y, (h) is considerably much harder because of the presence of the (kernel regression)
estimator Z. Furthermore, the above adjustment does not work for v > 0 (kink RD designs)

because in this case the slopes should be appropriately demeaned.
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Part 111
Fuzzy RD Designs

We now allow for imperfect treatment compliance, and hence
T, = T;(0) - 1(X; < z) + T;(1) - U(X; > @),

that is, the treatment status T; is no longer a deterministic function of the forcing variable X;, but
P[T; = 1]|X;] still jumps at the RD threshold level . To be able to employ the same notation,

assumptions and results given above for sharp RD designs, we recycle notation as follows:
Yi(t) :=Y;(0) - (1 = T;(t)) + Yi(1) - T5(2), t=0,1,

and
Zi(t) = Zi(0) - (1 - Ty(1) + Zu(1) - Ti(t),  ¢=0,1,

Through this section we employ the same notation introduced for the case of sharp RD designs.
The main change is in the subindex indicating which outcome variable, Y or T, is being used to
form estimands and estimators. In other words, we now have either 2 outcomes (standard RD
setup) or 2 + d outcomes (covariate-adjusted RD setup).

To conserve some space, we do not provide proofs of the results presented in this section. They
all follow the same logic used for sharp RD designs, after replacing the outcome variable and linear

combination vector as appropriate.

9 Setup

9.1 Additional Notation

We employ the following additional vector notation
T=[Ty T, TO) = [10), TuO),  TQ)=[T(1),- , Tu(1)].
We then collect the outcome variables Y and T together:
U, = [V, T, Ui(0) = [¥i(0), Ti(0),  Ui(1) = [vi(1), i(1)]',

U=[Y,T], U((0)=[Y(0),TO)],  U®)=[Y(1),TA),
py-(X) = Blvec(U(0))[X],  py4(X) = Blvec(U(1))[X],
Yy_ = V]vec(U(0))|X], Yyt = V]vec(U(1))|X],

py—(z) = E[U;(0)|X; = =], by (z) = E[U;(1)|X; = 7],
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ot () =V[U;(0)|X; = 2],  of(z) = V[Us(1)|X; = a].

Recall that e, denotes the conformable (v + 1)-th unit vector, which may take different dimensions

in different places. We also define:
pr-(z) =B[LO)X; =], pry(2) =EBLL)|X; = 2],
(@) = V[TO)|X; =a],  oF (@) = VIT(1)|X; = a].

In addition, to study fuzzy RD designs with covariates, we need to handle the joint distribution
of the outcome variable and the additional covariates. Thus, we introduce the following additional

notation:

F=[Y,T.Z], F(0)=[Y(0),T(0),Z0)], F(Q)=[Y(1),T1),Z1)],
pr-(X) = Blvec(F(0))|IX],  pp(X) = Blvec(F(1))[X],
Y p_ = V]vec(F(0))|X], Yy = Vivec(F(1))|X],
pr-(z) =BFi(0)[Xi =],  pp,(z) =BE[F;(1)]X; = ],

of (2) =VIFi(0)|X; =a], 0%, (2) = V[Fi(1)|X; = a].

9.2 Assumptions

We employ the following additional Assumption in this setting.

Assumption SA-4 (FRD, Standard) For o > 1, 2,2, € R with x; < T < x,, and all x €
[x], Ty

(a) The Lebesgue density of X;, denoted f(x), is continuous and bounded away from zero.

(b) py—(
(¢) of_(x) and o7, (x) are continuous and invertible.
(d) B[|U; ()[4 X; = =], t € {0,1}, are continuous.

(¢) pr—(2) # pr i (2).

x) and p, () are o times continuously differentiable.

Assumption SA-5 (FRD, Covariates) For o > 1, z;,x, € R with ; < T < xy, and all x €

[xb :Bu] )

(a) E[Z;(0)U;(0)'|X; = z] and E[Z;(1)U;(1)'|X; = x| are continuously differentiable.
(b) pp_(x) and pp (x) are o times continuously differentiable.

(¢) 0% _(x) and 0%, () are continuous and invertible.

(d) E[|F (t)|4|X =z|, t € {0,1}, are continuous.

(e) u3) (z) = py) ().
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9.3 Standard Fuzzy RD
Under Assumptions SA-2 and SA-4, the standard fuzzy RD estimand is

Ty,
Sv = TTV’ TYJ/:lu’gf-)l-_ng)—’ TT,V:N”E/Q_NFSZJZ, VSS,
v

where, using the same notation introduced above,

v 14 — 81} v v _ 8”
wr=ma@ = gop @) L ) =)@ =g (@) Ve{YiT)

=T =T

The standard fuzzy RD estimator for v < p is:

Ty (h)

iy e =) AL 0e) T = i () = i),

Sv(h) =
where, also using the same notation introduced above,
il () = viel By p(h), ) (h) = vielBy (), Ve {Y. T}

9.4 Covariate-Adjusted Fuzzy RD

The covariate-adjusted fuzzy RD estimator for v < p is:

Ty (h)

7 =) i) - _ ) ()
%Tﬂ/(h)? TY,V(h) - IU’YJ,»,p(h) - MY*,p(h% TT,I/(h> = ’uT+,p(h) — /'['T—,p<h)7

Sv(h) =
where, also using the same notation introduced above,

i) () =vlelBy,(h), Ay (h) =vleh, . By, (h),

with

Oy, (h) = ;], Vel{Y,T}.

10 Inference Results

The fuzzy RD estimators, ¢, (h) and ¢, (h), are a ratio of two sharp RD estimators, (7y,,(h), 71, (h))
and (Ty,(h), 77, (h)), respectively. Therefore, the fuzzy RD estimators are well defined whenever
their underlying sharp RD estimators are, and the results from the previous section can be applied

directly to established asymptotic invertibility of the corresponding matrices.
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10.1 Consistency
Under Assumptions SA-1 and SA-4, and if nmin{h! 2", h}r””} — oo and max{h_,h,} — 0, then

~ Ty,
§V(h) —P Sy = V?
TTv

which has been established in the literature before (e.g., Calonico, Cattaneo, and Titiunik (2014b)).
Similarly, proceeding as in Lemma SA-7, after imposing assumptions SA-4 and SA-5, we obtain

the following lemma.

Lemma SA-15 Let Assumptions SA-1, SA-4 and SA-5 hold with o > p. Ifn min{hlf2”, hljz”} —
oo and max{h_,hy} — 0, then

with

vv = [0} + 03] [Bl(Zi(0) — pae (X)Vi(0)|X; = 2] + B[(Zi(1) — py (X)) V(1) X; = 7],

for Ve {Y,T}, and where recall that py_ = py (%), pgyy = py (), 04 = 0% (), and

o, =0%. (7).

10.2 Linear Approximation

To obtain MSE approximations, MSE-optimal bandwidths, and large sample distribution theory
for the fuzzy RD estimators, we employ a linear approximation for these estimators. This approach
gives a representation of the fuzzy RD estimators based on linear combinations of the underlying
sharp RD estimators.

Specifically, using the identity

a a 1 A a - 1 .
s——-=—(a—a)— =(b=b+ —=(b—0b?—=(a—a)(b-10),
P ( ) = (0 —0) b2b( ) bb( )(b—b)

we have the following linearizations.

10.2.1 Standard Fuzzy RD Estimator

We have v (h)

N TY v TY v / ~

h)—-¢, =— — — =f h) —

Sv(h) = v %T,u(h) TT v Uw Vec(ﬁU’p( ) ﬁU’pH_eg’m

with
1
fUﬂ, = TI;V &® I/!e,,
S TrL
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and
L (yu(h) - my) (k) — Tr).

TY,v R 9
€cv=—7 (7T, h) — T -
($74 T%7VTT7V<h) ( l/( ) ﬂ/) TT7V7—T7V(h)

Therefore, under the assumptions above, it follows from previous lemmas that

1 —v
Cv = Op <nhl+2V + h2(1+p )> = O]P(l)a

provided that nmin{h1_+2”,hi+2”} — oo and max{h_,h;} — 0, and the assumptions imposed

hold.
Recall that

BU,p(h) = BU+,p(h+) - BU—,p(h—)7 IBU,p = 16U+,p - BU—,p?

with
1 A 1
H, ' (h)P_,(h)U, Bu+p(h) = ﬁszl(h)PJﬁp(h)U,

BUf,p(h) = \/ﬁ D

or, in vectorized form,

Thus, we have
g7 () = [y (
By~ p Ky~ p

) () = () (h), 3] ()] = vielBry ,(h),

U+,p Y-+,p
p = = el By, ) = )] = viel By

), i) (b)) = vlel By (),

>

10.2.2 Covariate-Adjusted Fuzzy RD estimator

We have ()
TY,v TY,v ~
= fF,V<h)lveC(16F,p(h) - BF,p) + € v

gy h) — Sy = <
( ) TT,V<h) TTv

with (see Lemma SA-15)
1

1
TT,v TT,v
TY,v TY,v
fF,l/(h) = _T% y ®@vle, —p fF,Z/ = _7—% . ®vle,
1 TYw
v ,vip + T%’V ’YTvp

- 7—;71} %Y,p(h) + %S’T,p(h) TT
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and

1

TT,V%T7V(h)

Ty, 5
€y = 5= (Fru(h) = 71,)° -

() (Fya(h) = 7v,) (71 (h) — 71,).

Therefore, under the assumptions above, it follows from previous lemmas that

1 —v
€z = Op <nh1+2u + PPt )> = O]P(l)’

provided that nmin{h1_+2”,hi+2”} — oo and max{h_,h;} — 0, and the assumptions imposed
hold.
Recall that

BF,p(h) = BF+,p(h+) - BF—,p(h—)7 IBF,p = IBF—l—,p - BF—,pv

with
N 1 _ - 1 _
BFf,p(h) = 7Hp l(h)P—JJ(h)Fa ﬁFJr,p(h) = 7Hp1(h) 'hp(h)F
vnh nh
or, in vectorized form,
A 1

(L, © H, ()P, ()] vec(F).

Thus, we have
i) (B =18 (), i) (h), 15 (R)) = viel B (),

pY) (h) = [ (h), ) (h), B (R)') = viel B, ,(h),

W) _ [(V) ) (V)’] ) [(V) ) ()]

/
Bp” = Uy s pbp s By V!eV/BFf,p’ Bry = Ky B Bz vle; BFer

Therefore, all the results discussed for covariate-adjusted sharp RD designs can be applied to
fuzzy RD designs, provided that the vector of outcome variables S; is replaced by F;, and the
appropriate linear combination is used (e.g., sg, (h) is replaced by fr, (h)).

10.3 Conditional Bias

We characterize the smoothing bias of {,BU,7p(h),,BU+,p(h)} and {BF,’p(h),,BF+7p(h)}, the main
ingredients entering the standard fuzzy RD estimator ¢, (h) and the covariate-adjusted sharp RD
estimator ¢, (h), respectively. Observe that

E[By _ ,()|X] = Tiq © H ' (T2}, () Ry () K- (W)]E[V (0)[X]/n,
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E[By 1 ,(n)1X] = [T ® H, (W7, (AR, (h) K (R)]E[V(1)|X] /n,
for Ve {U, F}.

Lemma SA-16 Let assumptions SA-1, SA-/ and SA-5 hold with 0 > p + 2, and nh — oo and
h — 0. Then, V € {U, F},

E[vec(By_ ,(h))|X]

=vec(By_,) + T14a ® Hgl(h)] [(RYPBy_ pp(h) + B> "By _ i1 (h) + op(R*TP)]

Elvec(By ,(h))|X]
= vec(By ) + Miva @ Hy' ()] [R'7PBy s pp(h) + B2 PBy ppi1(h) + op(h*P)]

where
pit (1)
By pa(h) =4 @ F:}p(h)ﬂf,p,a(h)]ﬁ —pBy_pe=[l+4® I‘:’lpﬂ,7p,a]ﬁ’
i 1+
Byt pa(h) =M@ F;;(h)ﬁ#p,a(h)]ﬁ —p By pa=[T14a @701 4] (1:-+a)!.

10.4 Conditional Variance

We characterize the exact, fixed-n (conditional) variance formulas of the main ingredients entering
the standard fuzzy RD estimator ¢, (h) and the covariate-adjusted sharp RD estimator ¢, (h). These
terms are V[By_ (h)|X] and V[By ,(h)|X], for V € {U, F}.

Lemma SA-17 Let assumptions SA-1, SA-2 and SA-3 hold, and nh — oo and h — 0. Then, for
Ve {U F},

Vivee(By_ ,(h))[X]

= [M14q @ H (M=) (R)Rp(h)K_(h)]Sy_[Li1q ® K_(h)Rp(h)T "L (R)H, ! (h)]/n?
1

= i ® H, ' (D)][Tipa @ Py (B)]| Sy [Li4a @ P p(h)|[T14q @ H, ' (R)],

Vivee(By 4 (1) X]
— L ® Hy (D7 () Ry (h) Ko ()] Sy [Lq © Ko (MR, ()T (W H, ! ()] /0

= %[Iud @ Hy ' (0)]|[T14d ® Py p(h)] By [Tia @ Py (1) [T14q @ Hy ' (R)],
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with
nh{Iq ® Hy(h)]Vivee(By_ (7)) X]Ti1q @ Hy(h)] —p Ti4a ® D75 Wy [T @ T2

nhlLi+q ® Hy()V[vee(By 4 (0)|X][Li+a @ Hy(h)] —p D1t @ T8y plivg © T,

where
0
By, = (@) [a%—_ o [ rp<u>rp<u>'K<u>2du] L =al (@) = VIViO)Xi = 7],
and
Tyy, = £(2) [a% o [ rp<u>rp<u>'K<u>2du} L o = ol (@) = VIVi()IX; = 2]

10.5 Convergence Rates

Furthermore, because the results in the previous section apply immediately to the numerator and

denominator of the fuzzy RD estimators. Furthermore, the results above imply that

Tia @ Hy()(By— (h) = By ,) = Oz <h1+p " \/%l) ’

Tiva ® Hy(0)](By 1 (h) — Byy,) = O (W n \/%) ,

for Ve {U, F}.

Furthermore, the vector of linear combinations satisfy

1 1
TT,v TT,v
Ty, Ty,
fFl/(h): _T2U @vle, —p fr, = _’T2U ®vle,
’ T,v ’ T,v
1 = TY,v z, _ 1 TY,v
- T ’YY,p(h) + T%‘.u 7T,p(h) T ’7Y,p + T% . 7T,p
and
1 1
%T,I/(l(ll?l) TT,v
~ TY,v _ TY,v
fru(h) = 7, () ® vle, —p fr, = 7z ® vle,
1 = TY,v =, _ 1 TY,v
— i Tvp(h) 4 2., 1Tp (h) T VYp T 72, 7Tp

provided that Assumptions SA-1, SA-4 and SA-5 hold, and nh'T? — oo and h — 0. Similarly,

under the same conditions,

1 1

P 77,0 (h) TTw
fup(h)=| #om | ®vle, —pfy,=| 7/, | @vle,.
#7 ,(h) T
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10.6 Bias Approximation
10.6.1 Standard Sharp RD Estimator

We have
Bias[c_ . (h)] = E[ff;, [vec(By— ,(h)) — vec(By— ,)]1X],

Biask-h”(h)] = E[fllj,u[vec(lBU—i-,p(h)) - VeC(BU—&—,p)”X]u

and therefore

Bias( ") (h)] = h'*P By, (k) + os(h'P7),

Bias[¢") (h)] = WP By, p(h) + op(h 7)),

e

where
BU—,I/,p(h) == f(,]yBU—,p(h) —P BU—,V,p = f(/],ljBU—,pa

BU+,V,p(h) = f[,],uBU—l—,p(h) —p Bu—up= f(/J,uBU+,p-
Therefore, we define
Bias[3, (h)] = Elfy;, [vec(By, (b)) — vee(By,,)]1X]
and, using the results above,

B¢y ()|X] = 7™ Buswp(he) = BT By p(he) + op(max {27 BP0,

10.6.2 Covariate-Adjusted Fuzzy RD Estimator

Using the linear approximation, we define
Bias[c"), (k)] = Blfp, [vec(Bp_ ,(h)) — vec(Br_ )X,

Bias[c\")(h)] = Blfp, [vec(Bry (b)) — vee(Bp ,)IX],

and therefore
Biasc"™) ()] = B+ By_, »(h) + op(h1FP7),

)

Biasc'V) ()] = K1+ Br_, »(h) + op(h1FP7),

where
BF—,wp(h) = fé?,uBF—,p(h) —p Bs—vp = fé«iuBF—,pv

Bty p(h) =5, Brip(h) —p Bs—up = 5, Bry p.

Therefore, we define
Bias[3, (h)] = Elff, [vec(Br,(h)) — vee(Bp,)]X]
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and, using the results above,
Bias[¢, (h)] = R\ P By p(hy) — B P 7V Be_, 5 (he) + op(max{h*TP7",

10.7 Variance Approximation

10.7.1 Standard Fuzzy RD Estimator

We define
Var[é,(h)] = VI[f};, [vec(By,(h)) — vec(By,)IX]
1 1
e Vo wp(h) + —1r Vot (hs)
14+2v VP 14+2v V5P
nht* nh++
with
Vu-wp(h) =, L@ P_,(h)]Zy-[Io @ P_,(h)fy.,
VU—i—,l«p(h) = fl/J,y[I2 ® P—l—m(h)]zUﬁ-[IQ ® P+,p(h)l]fU,V‘
Furthermore,

VU*,V,p(h‘) —P fllj,y[IQ & F:}Z)}‘I’Uf,p[IQ b2 F:}p}fU,u =: VU*,V,])?
Vuswp(h) —p £, T @ D70 W0, Wl @ T 0, = Vg,

10.7.2 Covariate-Adjusted Fuzzy RD Estimator

We define
Var[e,(h)] = V[, [vec(Bf,(h)) — vec(Bp,)]X]
1 1
SREST Vr—up(h-) + WVFW@(M)

with

Ve wp(h) = fp,Tosa @ P (W) EFr-[Ta1a @ P p(h)fE.,

Vetwp(h) =5, [Mloya @ Py p(h)]Zry [Toya @ Py (h)|fr,.

Furthermore,

24-p—v
h‘+

VF—,u,p(h) —P f;ﬂy[IZ-i-d & I‘:,lp]\I’F—,p[I%-d & F:in]fF,y = VF—,u,pa

Vitwp(h) —=p 5, Lora @ T e g @ T fr = Vg up,
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10.8 MSE Expansions

For related results see Imbens and Kalyanaraman (2012), Calonico, Cattaneo, and Titiunik (2014b),

Arai and Ichimura (2016), and references therein.

10.8.1 Standard Fuzzy RD Estimator

e MSE expansion: One-sided. We define
MSE[S— . (h)] = E[(fy;,[vec(By— ,(h)) — vee(By_ ,)N)?[X],

MSE[S+..,(h)] = B[(fy;,[vec(Byy p(h)) — vec(Byy ,)])*1X].
Then, we have:

) — 1
MSE[¢_,(h)] = R2(1+P )B%]—,V,p(h){l +op(1)} + WVUf,u,p(h)

1
2(14+p—v) 122
— p20+p )BUf,V,p{l +op(1)} + WVUf,V,p{l +op(1)}

and

) . 1
MSE[ 1 ()] = 207 (1 + 0p(1)} + — Vi)

— 1
= n2PIBE L {1+ 0p (D} + s Vo {1+ 0p(1)}

Under the additional assumption that By_, , # 0 and By, # 0, we obtain

_1 _1
14+2v  Vy_,,/n|*™ 1420 Vygup/n|*™
hu—vp = 5 and butvp = 2 :
20+p-v) B, 20+p-v) Bf,,,

e MSE expansion: Sum/Difference. Let h = hy = h_. We define
MSE[G+ () % & ()] = BI(£, [vec(By (b)) £ vec(By,)])*X]
Then, we have:

MSE[GJr,V(h) + ﬁf,r/(h)]
L 1
= B0 By (B) £ Bu— g (B)]* {1+ 08(1)} + — Vmarp(B) + Vs ()]

1
= p2Hr) [Butwp £ BUf,l/,p]2 {1+ op(1)} + nhitzr Vo-wp+ Voswp] {1+ 0p(1)}.
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Under the additional assumption that By, p, & By— ., # 0, we obtain

1
1+2v Vy—up+ VU+,VJJ)/”] 3+2p

a0 = ) (B

1
1+2v Vu_up+ VU+,V,p)/”] 3+2p

Pt = [2(1 +p =) (Butwp + Bu-wp)?

Note that, when h = hy = h_,
MSE[@/(h)] = MSE[&-&-,V(h) - é—,l/(h)]'

10.8.2 Covariate-Adjusted Fuzzy RD Estimator

e MSE expansion: One-sided. We define
MSE[S— o (h)] = B[(fp,[vec(Br_ ,(h)) — vec(Br_ ,)])?X],

MSE[Sy , (h)] = B[(fr,[vec(Bp ,(h)) — vec(Br ,)])*IX].
Then, we have:

. v 1
MSE[S—y (m)] = B BE_ ({1 + 0p(1)} + — Vi wp(h)

» 1
— h2(1+P )B%’—,V,P{l + Op(l)} + WVF?JAP{:[ + Op(l)}

and

. L 1
MSE[C, . (h)] = pAFP )B%Jr,l/,p(h){l +op(1)} + WVF+,u,p(h)

_ 1
= h2(1+p V)B%Ihl/,p{]‘ + O]P(l)} + WVF_"J’J){]‘ + O]P(l)}
Under the additional assumption that Br_, , # 0 and Br4 ., # 0, we obtain

_1 _1
1420 Vp_,,/n|*™ 1420 Vpiyp/n|*™

and brtvp =
2(1+p-v) B:_,, TP T 91+ p— ) Biis

hF—,wp =

e MSE expansion: Sum/Difference. Let h = hy = h_. We define

MSE[1 (h) £ (h)] = Bl(ff, [vec(B, () £ vee(Bp,)]) X]

54



Then, we have:

MSE[€+,V(h) + G,’y(h)]
1

— p2(1+p-v) [BF+,V,p(h) + BF—,u,p(h)]2 {1 + O]P’(l)} =+ nhl+2v

. 1
= 12 By By y? {14 0p(1)} + —rigaw VF—wp T Vrswpl {1+ op(1)}-

Vr—wp(h) + Vg p(h)]

Under the additional assumption that Bpy , , £ Br— ., # 0, we obtain

1
L+2v (Vr_up+ VF+,V,p)/n} 332

baryp = [2(1 +p—v) Bryup — BF*,I/,}D)2

1
1+2v (Vpup+ VF+7V7P)/n:| S+2p

Dy = [2(1 +p=v) (Briwp+Brup)?

Note that, when h = hy = h_,

MSE[S, (h)] = MSE[S4 »(h) — S (h)].

)

10.9 Bias Correction
10.9.1 Standard Fuzzy RD Estimator

The bias-corrected covariate-adjusted fuzzy RD estimator is

& (h,b) =&, (h) — [hi*p‘”BU+,p,q<h+,b+> — WP By (b bo) |

A i iy ') 0)

Bu— wpa(h,b) = fr, () [l @ T2, (R)0 (h) Ev=a iT p)' 7
~ (14p)

3 £ - " (b)

Bt v pq(hb) = T, () [T @ TLL (h)9 4 ()] (lljJ—rl—qp)u

Therefore, we have

1 1
W[IQer ® P, (hy,by)] - W[IQM QP (h_, b_)]] F

+6<,V + (fU,l/(h) - fU,V)lveC(BU,p(h) - IBU,p)'

&(h,b) = f'Uyy(h)’[

10.9.2 Covariate-Adjusted Fuzzy RD Estimator

The bias-corrected covariate-adjusted fuzzy RD estimator is

$°(h,b) =&y (h) — [hi*”‘”t%m,p,q(m, by) = BEP VB g (he, b-)] :
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. ] i ) (b)
Br_ypq(h,0) = £, (W) [Toyq @ TZL (R)9_ ,(h)]——2

(L+p!’
~ (14+p)
3 _7 / -1 Py g (D)
Bryupqg(h,b) =fr,(h)[Iz1q ® F+,p(h)19+7p(h)]m-
Therefore, we have
~bc F / 1 1
v (h,b) = fpy(h) W[I}i—d @ P, (e by)] = W[I2+d @ P, (ho,b_)]
+ —

+€5,V + (fF,V(h) - fF,V)lveC(BF,p(h) - BF,p)‘

10.10 Distributional Approximations
10.10.1 Standard Fuzzy RD Estimator

The two standardized statistics are:

T () = St ) - L
where ) .
Varlcy (h)] = WVUf,u,p(h—) + WVUJr,u,p(th%
Vi—wp(h) =1, [Tl @ P, (W)]Zu-[Io @ P ,(h) [fr,,
Vuswp(h) = f7,[I2 @ Py (M) By [T @ Py (R) R,
and

1 1
Var[ (h b)] h1+2yv VD, q(h—7 b—) h]_+2y VU+ v,p, q(h-‘r? b+)7

VU (h‘7 b) = f[,],l/[IZ ® Plic,p,q(h‘v b)]ES [12 ® Pticp q(h‘7 b),]fU,lla

—V,P,q
VU+W J(hb) =1, [L® P‘_fp (P D) B [T ® P‘_’:p (0, 0)1fur,.

As shown above, Vi, p(h) <p 1, Vuiwp(h) <p 1, Vi, (R,0) <p Land V£, , o (h,b) <p 1,

provided lim,, o, max{p_, p, } < co and the other assumptions and bandwidth conditions hold.

Lemma SA-18 Let assumptions SA-1, SA-4 and SA-5 hold with o > 1+q, andnmin{h{””, h}r””} —
00.
(1) If nh**™ — 0 and nhip+3 — 0, then

Ty, (h) —4 N(0,1).

(2) If nh**3 max{h? bz_(q_p)} — 0, nh?+3 max{h? b p2ap) } — 0 and lim,—,o max{p_, p, } < o0,
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then
175, (h,b) —4 N(0,1).

10.10.2 Covariate-Adjusted Fuzzy RD Estimator

The two standardized statistics are:

~1/ h) — v ~bc h b) — v
Troh) = A ZS g b by = S WP)
Var[g, (h)] ’ Var[$p¢(h, b)]
where ) .
Var[$y (h)] = —5, Vi wp(h-) + —575 Vit wp(he),
nhit? nh1++2
Vi wp(h) = fp,Tora ® P p(h)|Zp-(Ta1a @ Py (h) fr,,
Vit wp(h) =, [Iora @ Py p (W] EF i [Toya @ Py p(h)]fF,.
and
Var[ (h b)] h1+2yv qu(h*7b*) h1+2,/VF+qu(h+ab+)a
V}?&,u,p,q(h’ b) = f%‘,zz[]:?-‘-d ® P]ic,p,q(}% b)]zF [I2+d ® Pf D, q(h7 b)/]fF,V’

VF—i— V,p,q(ha b) fFV[12+d ® P+ D, q(h b)]2F+[IQ+d ® P+ D5 q(hv b)/]fF,V'
As shown above, Vp_ , ,(h) <p 1, Vi, p(h) <p 1, VEC qu(h b) <p 1 and VF+ l,pq(h, b) <p 1,

provided lim,, .o, max{p_, p +} < 00 and the other assumptions and bandwidth conditions hold.

Lemma SA-19 Let assumptions SA-1, SA-4 and SA-5 hold with 0 > 1+q, and nmin{h! ™", h_li_+2l’} —
00.
(1) If nh?® ™ — 0 and nh*> — 0, then

Try(h) —4 N(0,1).

(2) If nh* > max{h?, bi(q_p)} — 0, nhip+3 max{h? b} p2a=P) } — 0 and lim,_,oo max{p_, p, } < o0,
then
Tg‘,cy(ha b) —d N(O’ 1)

10.11 Variance Estimation
The only unknown matrices in the asymptotic variance formulas derived above are:
e Standard Estimator: ¥y_ = V[U(0)|X] and X4 = V[U(1)|X].

e Covariate-Adjusted Estimator: Xp_ = V[F(0)|X] and Xp, = V[F(1)|X].
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We consider two alternative type of standard error estimators, based on either a Nearest Neigh-

bor (NN) and plug-in residuals (PR) approach. For i =1,2,---  n, define the “estimated” residuals

as follows.

e Nearest Neighbor (NN) approach:

J

. | J 1

ev—i(J) =1(X; <) Tl Vi — 7 ZVL,j(i) )
i=1

J
. _ J 1
Evii(d) = U(Xi = T)y T Vi— 7 ZVA_J@) ;
=

where V € {Y,T, 21,25, -+, Z4}, and Ej(z) is the index of the j-th closest unit to unit 7 among
{X;: X; >z} and £; (i) is the index of the j-th closest unit to unit ¢ among {X; : X; < z},

and J denotes a (fixed) the number of neighbors chosen.

e Plug-in Residuals (PR) approach:
éV—:P,i(h) = ]I(XZ < :E) \/w*ﬁD,i(VtL' - rP(Xi - j)/B\/f,p(h))a

vipi(h) = UX; > Z)\ g pi (Vi — 1p(Xs — 7)' By ,(R)),

where again V € {Y, T, Z1,Z,--- ,Z4} is a placeholder for the outcome variable used, and
the additional weights {(w_ p;, w1 i) % =1,2,---,n} are described in the sharp RD setting

above.

10.11.1 Standard Fuzzy RD Estimator

Define the estimators ~ ~

and _ S

where the matrices Xy (J) and Sy (J), V,W € {Y,T}, are (p+ 1) x (p + 1) matrices with

generic (i, 7)-th elements, respectively,

C=1(X; < 2)UX; <2)1(i = j)ev—i(J)éew—i(J),

1] ’

Zvw- ()]

[ng+(«7)}ij =1(X; > 2)1(X; > 7)1 = j)év4,i(J)éws,i(J),

for all 1 <i,7 < n, and for all VW € {Y, T}.
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Similarly, define the estimators

R [ Svyv_ () Syr_o(h) |
ZU—,p(h) — ,\YY 7p< ) AYT 727( )

| Xy p(h) Err—p(h) |

and o ) )
R by h) X h
2U+7p(h) — AYYJr,p( ) AYT+,Z>( )

| Xrvap(h) Brrsp(h) |

where the matrices Sy ,(h) and Sy ,(h), V,W € {Y, T}, are (p+1) x (p+ 1) matrices with

generic (i, 7)-th elements, respectively,

[Svw—ph)] = 10X <DIUX; <D = )ev—pa(h)ew— i (h),

v

Bvwph)], = WX > DU > D)1 = v piWew p(h),

for all 1 <i,7 < n, and for all V,W € {Y,T}.

e Undersmoothing NN Variance Estimator:

. 1 . 1 .
Var[¢, (h)] = WVU—,v,p(h) + WVU-F,VJ)(}I)?

Vu—wp(h) = fu,(h)[I @ P_,(h_)]| Sy (J)[I2 ® P_p(h_) v (h),

Vit wp(h) = fu,(0) [T ® Py p(hy)| S0 ()T @ Py (b)) iy, (h).

e Undersmoothing PR Variance Estimator:

A 1 - 1 .
Var[¢, (h)] = mvﬂ,u,p(h) + WVUJr,u,p(h)»

Vo wp(h) = B (0) [T © Py (ho)[Bu— p(h-)Tara © P p(h) [y, (h),

Vo p(B) = fr (1) [o1q © P (b)) B p (s ) Tora © Py p(h) [ (h).

e Robust Bias-Correction NN Variance Estimator:

. 1 . 1 .
Var[&;°(h, b)] = —12o VO o (0, D) + —5 Vit v pq (B, b),
nh_+ P,q nh++

(h—,b_)Sy—(J)[I2 @ P>, (h_,b_)'[fy, (h),

VUi wpa(h,b) =fu,(h) [T @ P, (hy, b)) Zus (1)1 © P, (A, by) TEu, (h).

VB pa(Bb) = fu, (h) [ @ PP,
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e Robust Bias-Correction PR Variance Estimator

Var[¢5¢(h, b)] =

VEE

hl+2V

vpa(,D) = fu, () [ @ P,
Vot wpq(hb) =fu,(h) L@ Py,  (he,b1)|Busq(hy) T2 @ P, (b, by )y, (h)

l/,p7q(h’ b) +

—— o VF°

(hob )8y (h )L ® P, ,

1

1+2v VU+,V,p,q(h7 b)7

(h—7 b—)/]f‘UW(h)v

Lemma SA-20 Suppose the conditions of Lemma SA-10 hold. If, in addition, maxj<j<p |w_ ;|
Op(1) and maxi<i<n |wy ;| = Op(1), and o}, (z) and of;_(x) are Lipschitz continuous, then

Y ~ '/ ~ Y ~bc "/ ~bc
Var[fy(h)] 1, Var[fl,(h)] 1, Var[fgc(h, b)] 1, Var[fgc(h,b)] .Y
Var[S, (h)]] Var[S, (h)] Var[¢,¢(h, b)] Var[¢,¢(h, b)]
10.11.2 Covariate-Adjusted Fuzzy RD Estimator
Define the estimators
[ Byy-(J) Byr-()) Byz-(J) Byz-(J) Syze-(J) ]
Yry-(J)  Yrr-(J) Yrz-(J) Xrz,-(J) Yrz,-(J)
S () = Szv-(J) Bzr-(J) Bz2-(J) Bzz-()) 32,24~ (J)
P Sy (0) Ea0-()) Bz2-()) Bzz-(J)) 32,24 (J)
Yziv-(J) Bzr-(J) Xz,z,-(J) Yz,2,-(J) X 2424—(J)
and
[ Syva() Byre()) Byza(J) Byze(J) Sy z2,4(J)
Srvi()) Brr(d) Zrzi(d) Brg(J) 3724+ (J)
S0 () = Yav+() Barie(J) Bziz(J) Yz2,4(J) 32,24+ (J)
o S$5v1()) Bnri()) Bnz4()) Sznzi(J) EZQZMJ)
zv]ZdY-i-(J) EZdT-i-(‘]) 2V]ZdZH-(J) 2v]ZdZQ-i-(J) EZdZd“F(']) J

where the matrices Sy (J) and Sy (J), V,W € {Y, Z1, Zo,

generic (7, 7)-th elements, respec

[ZVW— (J)] ij

Evw(D)],; =
for all 1 <i,57 <n, and for all VW € {Y, Z1, Zo, - -

tively,

= ]I(Xi < .’TZ)][(XJ' < .f)]l(@
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Zq}, are n X n matrices with

= J)év_i(JJ)ew—.i(J),

1X; > 2)UX; > 2)1(i = j)év+i(S)éw+i(J),

: 7Zd}'



Similarly, define the estimators
[ EYY*,p(h) 2YTf,;D(h) fJ‘YZr,p(h) 2YZzwv(h) SYZd*yp(h) |
S () Yzv-ph) XYzir—p(h) Xz,2—p(h) Xz,2,—p(h) X224 p(h)
F*, = A~ ~ ~ ~ A~
i’ zzzy—,P(h) ZZ2T—,P(h) 2Z2Z1—,P(h) EZ2Z2—,P(h EZzzd—,P(h)
EZdY*,P(h) EZdTﬁp(h) 2A3ZdZ1*7p(h) ZAlZdeﬂp(h) T izdzdﬁp(h) i
and
[ Syvaph) Syriph) Byzigp(h) Bvzeph) o Byzph) ]
Yrviph)  Brryp(h)  Brziqp(h)  Yrz,4p(h) X124+p(h)
Sp () = Yzviph) Bzriph) Xzz4p(h) Xz,254 p(h) 21 Zg+p(h)
e Yzv+p(h) Bzriph) Xzzi1p(h) Xzoz04p(h) o XBzyz,4p(h)
L izdy-hp(h) E:ZdT-i-,p(h) 2Zczzl-i-,p(h) 2Zde-hp(h) 2ZchH-JD(h) i
where the matrices f]vw_,p(h) and ZA}VW_i_,p(h;), V.W € {Y,Z1,Zs,--- ,Z4}, are n X n matrices

with generic (7, j)-th elements, respectively,
< T)1(i = j)ev—pi(h)ew—p,;(h),

[2VW_’p(h)} g

Bvwrp(h)] = 10X 2 DUX; 2 D16 = Hevpa(h)ewpi(h),
for all 1 <i,7 <n, and for all VW € {Y, Z1, Za,--- , Zg}

e Undersmoothing NN Variance Estimator:
. 1 . 1 .
Var[S, (h)] = WVF—,v,p(h) + va,u,p(h),

Vi—wp(h) =Fry(h) [Tasqg @ Py (h_)|Ep_(J)Tarqg @ P y(h_))fr, (h),

Vit wph) =y (1) Torg © Py (h )] S5 ()24 © P p(he)]Er, (B)

e Undersmoothing PR Variance Estimator:

~ 1 ~ 1 .
Var[$,(h)] = mvﬂ,w(h) + WVF+,V,p(h)7

~

Vi wp(h) = (1) [T © Py (h-)]Ep— p(ho)Tara © P p(h-)[Er (h),

]A)F—i-,v,p(h) = f.F,l/(h),[I%—d & P+,p(h*)]2F+,p(h+)[I2+d ® P+,p(h7) }fF,V(h)
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e Robust Bias-Correction NN Variance Estimator:

1

Var[c®®(h, b)) = hl+2va_qu(h,b) 3 V(B b).
+

VF— U\, q(h? b) = fF,V( )) [I2+d & P— pq(h‘—? b—)] by (J) [12+d ® P— D5 q(h—> b—),]fF,V(h>7

Vit wpq(hb) =fp,(h)[Iiq @ P, (hi b)) Ep () oa @ P, (hy, by) 1Er, ().

¢ Robust Bias-Correction PR Variance Estimator:

1

Var[Nbc (hv b)} VF— UsD, q(ha b) + W]}F-‘r,u,p,q (h7 b)a
+

hl+21/

VFf VLD, q(h7 b) = f‘F,I/(h) [12+d ® Pf D, q(h—7 b-)]iF—#](h )[12+d ® Pf D, q(h—7 b—)l]fF,V(h)7

Vs wpa(,b) = Ery (1) Torg @ P,  (hy b)1B kg (A Tova © PY, 4 (e, b1) s ().

Lemma SA-21 Suppose the conditions of Lemma SA-11 hold. If, in addition, maxj<i<p |w— ;| =

Op(1) and maxi<i<n |wy ;| = Op(1), and 0%, (z) and o%_(x) are Lipschitz continuous, then

Var[c¢(h, b)]

Varlg, ()] Var(s, ()] Var(gy* (b, b)] Var[¢,)"(h, b)]
Var[c2¢(h, b)]

Varlc, ()] Varle ()] F Y Varl®®(n, b) el

—P ]-a

10.12 Extension to Clustered Data

As discussed for sharp RD designs, it is straightforward to extend the results above to the case of
clustered data. Recall that in this case asymptotics are conducted assuming that the number of
clusters, G, grows (G — o0) satisfying the usual asymptotic restriction Gh — 0.

For brevity, we only describe the asymptotic variance estimators with clustering, which are now
implemented in the upgraded versions of the Stata and R software described in Calonico, Cattaneo,
and Titiunik (2014a, 2015). Specifically, we assume that each unit 7 belongs to one (and only one)
cluster g, and let G(i) = g for all units ¢ = 1,2,--- ,n and all clusters ¢ =1,2,--- | G. Define

G N_—1 G Ny-1
’ w"’_:p: .
G_IN —p—1 G_IN,—p—1

w_’p =

The clustered-consistent variance estimators are as follows. We recycle notation for convenience,
and to emphasize the nesting of the heteroskedasticity-robust estimators into the cluster-robust

ones.
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10.12.1 Standard Fuzzy RD Estimator

Redefine the matrices 3y _(J) and Xyy4 (J), respectively, to now have generic (i, j)-th elements

[Bvw-())],; = UXi < 2)U(X; < 2)NG(0) = G(5))ev—i(S)ew—i(J),

)

Svw ()], = 10X > DX > DUGE) = GU)ev4i(Dews (),

J
1<i,j<n, V,Wel{y,T}

Similarly, redefine the matrices ZA)VW_,p(h) and ﬁ)vw+7p(h), respectively, to now have generic (4, j)-
th elements

= 1(X; <2)UX; <2)UG(1) = G(4))ev—pi(h)Ew—p,;(h),

v

[ivwap(h)}

[Svwio)] =1X > DI > D)UT) = G0)ev+ pah)ew+p5(h),

ij
1<i,j<n, V,We{Y,T}

With these redefinitions, the clustered-robust variance estimators are as above. In particu-
lar, if each cluster has one observation, then the estimators reduce to the heteroskedastic-robust

estimators with w_ ,; =wy ,; =1foralli=1,2,--- n.

10.12.2 Covariate-Adjusted Fuzzy RD Estimator

Redefine the matrices 3y (J) and Sy (J), respectively, to now have generic (i, j)-th elements

[Evw_(J)].. = UX; <) WX, < 2)UG() = G(4)ev_i(J)ew—i(]),

ij
[Svw+()]; = WX > 2)UX; > 2)UG () = G(5))ev+i(Dew+i(]),
1§z’,j§n, V,WG{Y,T,Zl,ZQ,”-,Zd}.

Similarly, redefine the matrices Sy ,(h) and By 4 ,(h), respectively, to now have generic (i, §)-

th elements

= 1(X; <2)UX; <2)UG(i) = G())ev—pi(h)ew - p;(h),

[EVW—,p(h)} y

= 1(Xi 2 2)UX; = 2)NG(i) = G(1))ev+pi(h)ewp;(h),

1)
1§Z>j§n7 ‘/:WE{YaT?ZlaZ%”'aZd}'

{2VW+,p(h)}

With these redefinitions, the clustered-robust variance estimators are as above. In particu-
lar, if each cluster has one observation, then the estimators reduce to the heteroskedastic-robust

estimators with w_,; =wy p;=1foralli =1,2,--- ,n.
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11 Estimation using Treatment Interaction

As in the case of sharp RD designs, it is easy to show that the interacted covariate-adjusted fuzzy
RD treatment effect estimator is not consistent in general for the standard fuzzy RD estimand.
Recall that we showed that <, (h) —p ¢, and <, (h) —p ¢, under the conditions of Lemma SA-15
e () (V)
and if py | =py”.
In this section we show, under the same minimal continuity conditions, that

p L 7j’Y,z/(h)
Cl/(h) o ﬁT,V(h>

—p C, # Sy

in general, and give a precise characterization of the probability limit.

Lemma SA-22 Let the conditions of Lemma SA-15 hold. Then,
() vy
TYy — |:#'Z+’YY+ - u’Zf"YY—]

_ |, @y _ o,y
TTw Rz Y1+ — KBz Y1

gu(h) —P CV =

with, for Ve {Y, T},
Yy =0, B [(Zi(0) — py (Xi)Vi(0)| X; = 2],

Yvy =0 B [(Zi(1) — py (X))Vi(1)| X; = 7],

where recall that py = py (), pyy = py (%), 05 =05 (), and 0%, = 0% (7).
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Part IV

Implementation Details

We give details on our proposed bandwidth selection methods. We also discuss some of their basic
asymptotic properties. Recall that v < p < ¢, and let h = (h_,hy), b = (b_,by), v = (v_,v4),
d = (d_,d;), denote possibly different vanishing bandwidth sequences. The implementation details
described in this section are exactly the implementations in the companion general purpose Stata

and R packages described in Calonico, Cattaneo, Farrell, and Titiunik (2017).

12 Sharp RD Designs

All the bandwidth choices in sharp RD settings rely on estimating the following pre-asymptotic

constants.

e Bias Constants:

(1, —Fyp ()]G P

B_yph) =0_yp(h-) (1+p)!

o Oup(h) = Mg @ Ve, T (MY p(h)],

(1, ~Fyp (1) ]G
(1+p)!

Biyp(h) = O p(hy) o Oppp(h) = Lt @ vie T, (R) 94 p(h)].

e Variance Constants:
Vs—wp(h) =s5,(0) [Li1g @ P p(h- )]s [T144 @ P p(h-)]ss . (h),

Vsiwph) =sg, (W) [Tiyqg @ Py p(h)| sy Ti4a @ Py p(hy)]ss,(h).

where g and ¥g; depend on whether heteroskedasticity or clustering is assumed, and
recall that
P_,p(h) = VALZL(R)R,(h)K—(h)/v/n,

P, (k) = VAT, (MR,(W)K 1 (h)/V/n.

We approximate all these constants by employing consistent (and sometimes optimal) prelimi-
nary bandwidth choices. Specifically, we consider two preliminary bandwidth choices to select the

main bandwidth(s) h: (i) b — 0 is used to estimate the unknown “misspecification DGP biases”

( P',(sljp) glj_rp)

(O— v p(+); 04 0p(),P_rp(-),Pyrp(-)) and the variance terms. In addition, we construct MSE-

optimal choices for bandwidth b using the preliminary bandwidth v — 0, and an approximation

to the underlying bias of the “misspecification DGP biases” ,ugjp ) and /J,(Slip )

bandwidths h and b are chosen, we employ them to conduct MSE-optimal point estimation and

and p ), and (ii) v — 0 is used to estimate the unknown “design matrices objects”

. Once the main
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valid bias-corrected inference.

12.1 Step 1: Choosing Bandwidth v

We require v — 0 and nv — oo (or Gv — oo in the clustered data case). For practice, we propose

a rule-of-thumb based on density estimation:

) 1/5
b= Cx-Cea-n V%  Cp= 8T | K(u) dz , cgd:nnnl{& ]q”%},
3 (f u2K(u)du) 1.349

where s denotes the sample variance and IQR denotes the interquartile range of {X; : 1 < i <
n}. This bandwidth choice is simple modification of Silverman’s rule of thumb. In particular,
Ck = 1.059 when K(-) is the Gaussian kernel, Cx = 1.843 when K(-) is the uniform kernel, and
Ck = 2.576 when K(-) is the triangular kernel.

12.2 Step 2: Choosing Bandwidth b

Since the target of interest when choosing bandwidth b are linear combinations of either (i) M(HP )

S+
ugjp ), (ii) ugjp ) g:p ), or (less likely) ,ugjp ) 1 ugjp ), we can employ the optimal choices

already developed in the paper for these quantities. This approach leads to the MSE-optimal

and p

infeasible selectors (p < q):
Under the regularity conditions imposed above, and if Bs_ 11,4 # 0 and Bgy 14p4 7# 0, we

obtain 1
b - 3 _l_ 2p VS—J-‘,—p,q/n 3+2q
S+,14+p,q _2((1 . p) B%,’H,p’q ] )
- 4 1
312
b [ 342 Vorape/n] ™
S+,1+p,q _2(61 _ p) B?S*+,1+p7q ] )

and if Boy 14pq £ Bs— 14p,q # 0, we obtain

3+2p (Vs—14pg+ VS+71+p,q)/n] 3+2¢

bAS14pg = [
P Q(Q - p) (BS+,v,p - BS—,1+p,q)2

3+2p (Vs—14pq+ VS+,1+p,q)/n] 342
2((1 - P) (BS+,1+p,q + BS*,Hp,q)z

Therefore, the associated data-driven counterparts are:

bs,14p,g = [

_1
3+2p Vs iipg/n|”™
2(g—p) B ’

bs+,14p,g =

_71+p7q
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1

b - . ;
N PR Bt 14pg
SUNUY EEE TN SPES ST Ll
T [26=P) (Bsywp — Bs—14pg)?
bes1m = 3+ 2p (Vf—,Hp,q + V§+,1+p,q)/” T
T _2(q -p) (Bs+14p,q + Bs— 14p,q)? i

where the preliminary constant estimates are chosen as follows.

e Variance Constants:
1A)S—,l—irzu,q = SS71+p(é)/[Il+d ® P—,q(é)]ﬁls— [Il+d ® P—7q(é)/]SS,l+p(é)a

Vst 11pa = 85149(€) T14d @ P g(8)] s [T14a ® Py g(8)]55,14p(8),

A A

¢ =(¢¢).

with £¢_ and 535+ denoting the estimators described above under heteroskedasticity or under
clustering, using either a nearest neighbor approach (X5_(.J), X5 (J)) or a plug-in estimated
residuals approach (25 4(¢), Zg1.4(¢)).

e Bias Constants:

a R [13 _’?Y,q(é)/] »(91:5) (CZ*)
BS—,Hp,q = O—,1+p,q(0) (1 +p)! ’

[17 _F?Y7q(é)l] gi_,z) (Ci'f')
(1+p)!

BS+,1+p,q = Of,1+p,q(é)

)

where d = (d,, cﬁ) — 0 denotes a preliminary (possibly different) bandwidth sequence chosen

to approximate the underlying bias of the bias estimator.

To construct the preliminary bandwidth d = (d_,dy), can use (recursively) MSE-optimal

choices targeted to the corresponding “misspecification DGP biases”: (i) Mgqu) — ung), (ii) p,gle)

(1+q) (1+q) (1+4)

and pg ™, or (less likely) pg, ™ + pg . This idea gives the MSE-optimal choices are:
_ Sl
3+ 2¢ Vs—14g14q/n |
L S_71+Q11+q J
_ S
2
3 +2q Vst 14q14q/n |7
aS+,1+q,1+q = 2 62 )
L S+,1+q,1+q |
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1
LN — [3 +2q (Vs— 1+q14q T VS+,1+q,1+q)/n] 5+24
71+ 71+
@i 2 (Bstitqit+g — Bs—14q1+¢)? ’
1
Ons [3 +2q (Vs—14q1+q T Vs+,1+q,1+q)/n] 5+
,1+q,1+¢q .
2 (Bst1tg14q T Bs—14q149)?

In turn, these choices are implemented in an ad-hoc manner as follows:

1

[ . 15+
o _ |3+ 2qVs—14g14q/n| T
05— 14¢,14q = 2 Z§2 )
L S—,14+q,1+q |
_ - 1
s 542
2 |3+ 2qVsq 14g1tq/n |
05+,14¢,14+q = 5 B ;
L S+,1+q,1+q |

0aS14q14q = 52 (V§_,1+q71+q ™ V§+,1+q,1+q)/n o )
2 (Bstitqire — Bs—11q114)? |

COESERREPIES 3+ 2¢ (V5119149 + VSt14g.144) /7 o ;
| 2 (Bstatarte + Bs—11g.149)” |

where
Vs 1tg1+g = 55144(&) [la @ P 114(8)] 85 T11a @ P 144(8))s5,144(8),
Vst itaitg = 8514+q(&) Tia ® Py 14q(8)] 51 Tipa © Py 144(8)185,144(8),
¢ =(¢¢).
with £¢_ and 25+ denoting the estimators described above under heteroskedasticity or under

clustering, using either a nearest neighbor approach (Xs_(J),¥s4(J)) or a plug-in estimated
residuals approach (25 144(¢), Est.114(¢)), and

5 ~ ~ ~ (1 N
Bs—1+q1+q = ([17 —’Yy,q(C)']Hqu,%q(fﬂ—D O 114,144(0),

3 ~ ~ ~(1 ~
Bst 1+¢1+q = ([17 —’YY,q(C)']Hg:&q(mH) O 144,144(6),

where z_ and x4 denote, respectively, the third quartile of {X; : X; < Z} and first quartile of {X; :
X; > z}. Notice that l”;’g,,Hq,Hq and és+71+q71+q are not consistent estimates of their population
counterparts, but will be more stable in applications. Furthermore, the resulting bandwidth choices
(65771+q,1+q,55+,1+q,1+q,6A5’1+q71+q,ﬁ2371+q71+q) will have the correct rates (though “incorrect”
constants), and hence [3’5_71+p,q and BS+’1+p’q will be consistent estimators of their population
counterparts, under appropriate regularity conditions, if d = (cz_, cz+) = (65,71+q71+q,ﬁgJﬁHq,Hq)

ord= ((L, aﬁ) = (6AS,1+q,1+q,6AS,1+q,1+q) ord= ((L, CZ+) = (625,1+q,1+q>625,1+q,1+q)-

The following lemma establishes the consistency of these choices. The result applies to the
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heteroskedasticity-consistent case, but it can be extended to the clustered-consistent case using the
same ideas, after replacing n by G, as appropriate, to account for the effective sample size in the

latter case.

Lemma SA-23 Let the conditions of Lemma SA-13 hold with 0 > g+ 3. In addition, suppose that

min{Bs— 1+¢,1+¢, Bs+,1+q¢,1+¢: Bs+,1+q.1+q — BS—1+4q,1+¢> BS— 144,149 T Bs—1+¢,1+¢} —p C € (0,00),
and k(-) is Lipschitz continuous on its support. Then, if min{Bg_ 14pq¢ BS+ 14p.q> BS+.1+pq —

BS_71+p’q’ BS_7l+p7q + BS+,1+P,Q} # 0’

bS—,1+p7q —p bS+,1+p,q —p 1 bAS71+p,q —p 1 bES,Hp,q —pl
— — L — , L .
bs+,14p,q bAS,14p.q b8,14p,q

bS*71+p7q

The proof of Lemma SA-23 is long and tedious. Its main intuition is as follows. First, it is
shown that both & —p 0 and d —p 0, with d € {05 14q14q> 05+ 14q 14> OAS14q14q> 0SS 1+q. 149}
satisfy the following properties: % —p 0 and P[C1v < 0 < Cyv] — 1, and ‘%d —p 0 and
P[C1d < d< Cyd] — 1, for some positive constants C; < Co. This may require “truncation” of the
preliminary bandwidths, which is commonly done in practice. Second, the previous facts combined

¢

with the Lipschitz continuity k(-) allows to “replace” the random bandwidths by their non-random

counterparts. Finally, consistency of the underlying constants of the bandwidths selectors in Lemma

SA-23 follows by the results obtained in the sections above.

12.3 Step 3: Choosing Bandwidth h

With the assumptions, choices and results above, we have the following implementations:

1

j Y f/577,,,p/n_ e
S—wv,p — ~ )
v,p _2(1 +p— l/) Bg_, »
_ . o1
; 14+2v  Vsyup/n s+
S+,v,p — — 59 y
_2(1 TP V) BS+,v,p J
r ~ N 41
. 1420 (Vs—wp+ Vsiwp)/n |
[]AS,V,p = 5

2(1 +p - V) (BS+7V7P - 85—71/7]3)2 _

1+ 2v O}Sav,p + f)SJr,l/,p)/”- s
2(1+p—v) (BS+,V,p + BS—,V,p)2 i

hES,V,p =

where now the preliminary constant estimates are chosen as follows.

e Bias Constants: R (14p) /2
[17 _7Y,p(b)/] S,Z (b—)
(1+p)!

BS_7V7P = 077V7p(é)

9
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~ 1
Ber —0n o= Tra® g H (b)
S+7V7p - +,v,p (1 +p).

9

with b = (i),, Z)+) chosen out of {6,71+p,q, 6+’1+p7q, EAJA,Hp’q, [Aag,lﬂ,’q} as appropriate according
to the target bandwidth selector.

e Variance Constants:

Vst wp = 550(8) [T14d ® P p(8)|Bss [Ti1a ® Py (¢) ]85, (€),

&= (0).

with 3g_ and 25+ denoting the estimators described above under heteroskedasticity or under
clustering, using either a nearest neighbor approach (Xg_(.J), X5 (J)) or a plug-in estimated
residuals approach (2g5_,(¢), Zs4 »(¢)).

The following lemma establishes the consistency of these choices under some regularity condi-

tions.

Theorem SA-1 Suppose the assumptions in Lemma SA-23 hold. Then, if min{Bs_ ., , Bs+ v.p, Bs+,v.p—
BS*?”J” BS*7V7P + BS+7V:IJ} # 0!

~

h_vva _>p 17 b-i—,l/,p .1 bAvVJO _>p 17 bE,V,p —. 1.
b—vp btvp bawp bsvp

The proof of this lemma is analogous to the proof of Lemma SA-23.

12.4 Bias-Correction Estimation

Once the bandwidths have been chosen, it is easy to implement the bias-correction methods. Specif-

ically, the bias-corrected covariate-adjusted sharp RD estimator is

~bc (h b) = %Y,V<h) o [h}%er_VBSJr,p,q(th b+) - hljp_VBSﬁp,q(h—v b—) )

5 y (1+p (b)
Bs-palhb) = s, (B) Masa @ D= (0] L0
; g (b)
B aipa(h ) = 850 () [ha © DL ()90 T,

and thus its feasible version is
7% (h,b) = 7y, (h) — [h1++p—”z§5+,p7q(iz+, by) — PV Bey o (he b))
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~ (14p)

N N~ oA ~ R R l‘l’S (b )

Bs—palh—,b-) =ss,(h)[Ti g @ T2, (h- )ﬂ—,p(hf)]ﬁ’
~ (1+p)

A~ ~ ~ ~ _ N R IJ’S (b+)

Bstwpalhe,b4) =s5,(h) [T11a ® F+,1p(h+)19+,p(h+)]ﬁ’

where b = (b_,b,) is chosen as discussed in Step 2 above, and h = (h_, h, ) is chosen as discussed
in Step 3 above. Notice that & and d are not used directly in this construction, only indirectly
through b and h.

12.5 Variance Estimation

Once the bandwidths have been chosen, the robust variance estimation (after bias-correction) is

done by plug-in methods. Specifically, the robust variance estimator is as follows.

¢ Robust Bias-Correction NN Variance Estimator:

1 - be PN 1 IR
nhit2y Vst Vb, Q<h b) + h1+2uVS+qu(h b)

VE a8, B) = 85, () [Li1a © P, (h,b)[Ss () Lira © P, (o b-) Jss.(

S‘)

),

Vst wpg(h,b) =s5,(0)[T11g @ P, (hy, b)|Bs 1 (J)[Tig @ P, o (hy,by) s, (h),

e Robust Bias-Correction PR Variance Estimator:

N b o f 1 c ~ A 1 ~ A~
Var[r‘}’,jy(h, b)| = WV}%—, D q(h b) + hHQV VS+ vpq(h,b),
VS— UsD, q(ﬁv B) = (ﬁ) [Il+d ® P— D, q(h—’ b )]25 q(iL—)[Il-l—d ® Ptic,p,q(;l—’ l;—)/]ss,l/(ﬁ)’

Vi wpa(, ) =s5,(0) [T @ P, (hy, by)| By o(h) T @ P, o (hy, b1 ) )ss,(R).

where b = (b_, b, ) is chosen as discussed in Step 2 above, and h = (h_, h.) is chosen as discussed
in Step 3 above. Notice that & and d are not used directly in this construction, only indirectly
through b and h.

13 Fuzzy RD Designs

Follows exactly the same logic outlined for the sharp RD setting, after replacing S; = (Y;,Z,)’
by F; = (Y;,T;,Z}), and the linear combination sg,(-) by fr,(-), as discussed previously for
estimation and inference. We do not reproduce the implementation details here to conserve space.
Nonetheless, all these results are also implemented in the companion general purpose Stata and R

packages described in Calonico, Cattaneo, Farrell, and Titiunik (2017).
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Part V

Simulation Results

We provide further details on the data generating processes (DGPs) employed in our simulation
study and further numerical results not presented in the paper.

We consider four data generating processes constructed using the data of Lee (2008), who studies
the incumbency advantage in U.S. House elections exploiting the discontinuity generated by the
rule that the party with a majority vote share wins. The forcing variable is the difference in vote
share between the Democratic candidate and her strongest opponent in a given election, with the
threshold level set at £ = 0. The outcome variable is the Democratic vote share in the following
election.

All DGPs employ the same basic simulation setup, with the only exception of the functional
form of the regression function and a correlation parameter. Specifically, for each replication, the

data is generated as i.i.d. draws, ¢ = 1,2,...,n with n = 1,000, as follows:

Y= #y,j(Xi’ Z’L) + €y, Zi = NZ(X’L) + €2 X~ (28(2’4) - 1)

2
Eyi .
v~ ./\/(0, Ej) R Zj = Uy pjago-z )
€z POy fope

with B(a,b) denoting a beta distribution with parameters a and b. The regression functions

where

ty i (2, 2) and p,(2), and the form of the variance-covariance matrix ¥;, j = 1,2,3, 4, are discussed

below.

e Model 1 does not include additional covariates. The regression function is obtained by fitting
a b-th order global polynomial with different coefficients for X; < 0 and X; > 0. The resulting
coefficients estimated on the Lee (2008) data, after discarding observations with past vote

share differences greater than 0.99 and less than —0.99, leads to the following functional form:

(z.2) 0.48 + 1.27x + 7.1822 + 20.2123 + 21.542* + 7.33z° ifx<0
x,z) =
Hy 0.52 + 0.84z — 3.0022 + 07.9923 — 09.012* + 3.562° ifx>0

We also compute o, = 0.1295 and o, = 0.1353 from the same sample.

e Model 2 includes one additional covariate (previous democratic vote share) and all para-
meters are also obtained from the real data. The regression function for the outcome is
obtained by fitting a 5-th order global polynomial on X; with different coefficients for X; < 0

and X; > 0, now with the addition of the covariate Z;, leading to the following regression
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function:

(z.2) 0.36 + 0.96x + 5.472% + 15.2823 + 15.87z% + 5.14z° + 0.222 ifz <0
T,z2) =
Hy.2 0.38 + 0.62x — 2.84x% + 08.4223 — 10.242* + 4.312° + 0.282 if x>0

Similarly, we obtain the regression function for the covariate Z; by fitting a 5-th order global

polynomial on X; on either side of the threshold:

p (z) =

0.49 + 1.06x + 5.7422 + 17.1423 + 19.752* + 7.47x° ifx<0
0.49 + 0.612 + 0.2322 — 03.462° + 06.432* — 3.482° ifz>0

The only difference between models 2 to 4 is the assumed value of p, the correlation between

the residuals €, ; and ¢ ;. In Model 2, we use p = 0.2692 as obtained from the data.

e Model 3 takes Model 2 but sets the residual correlation p between the outcome and covariate

to zero.

e Model 4 takes Model 2 but doubles the residual correlation p between the outcome and

covariate equations.

We consider 5,000 replications. We compare the standard RD estimator (7) and the covariate-
adjusted RD estimator (7), with both infeasible and data-driven MSE-optimal and CER-optimal
bandwidth choices. To analyze the performance of our inference procedures, we report average
bias of the point estimators, as well as average coverage rate and interval length of nominal 95%
confidence intervals, all across the 5,000 replications. In addition, we also explore the performance
of our data-driven bandwidth selectors by reporting some of their main statistical features, such
as mean, median and standard deviation. We report tables with estimates using triangular kernel
with different standard errors estimators: nearest neighbor (NN) heteroskedasticity-robust, HCy,
HCs and HC3 variance estimators.

The numerical results are given in the following tables, which follow the same structure as
discussed in the paper. All findings are highly consistent with our large-sample theoretical results

and the simulation results discussed in the paper.
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Table SA-1: Simulation Results (MSE, Bias, Empirical Coverage and Interval Length), NN

7

7

Change (%)

VMSE Bias EC IL VMSE Bias EC 1L VMSE Bias EC IL

Model 1

MSE-POP 0.045 0.014 0.934 0.198 0.046 0.014 0.936 0.197 0.4 —-0.5 0.2 —0.6

MSE-EST 0.046  0.020 0.909 0.170 0.047  0.020 0.907 0.170 0.4 -0.8 -03 -0.3

CER-POP 0.053 0.008 0.932 0.240 0.053 0.008 0.928 0.238 0.5 -1.8 —-04 -08

CER-EST 0.050 0.013 0.931 0.205 0.051 0.012 0.927 0.204 0.8 -22 -04 -0.5
Model 2

MSE-POP 0.048 0.015 0.930 0.212 0.041 0.010 0.935 0.183 -164 -331 0.5 —13.6

MSE-EST 0.0560  0.020 0.912 0.187 0.041  0.012 0.920 0.162 —-182 -36.6 09 -—134

CER-POP 0.056 0.009 0.928 0.257 0.048 0.006 0.930 0.221 —-15.0 -346 0.3 -13.9

CER-EST 0.055 0.012 0.926 0.225 0.046  0.008 0.936 0.194 -16.0 -36.6 1.0 —13.6
Model 3

MSE-POP  0.046  0.015 0.929 0.199 0.044 0.012 0.934 0.192 —5.0 —184 0.5 3.7

MSE-EST 0.048 0.020 0.909 0.176 0.044 0.016 0.915 0.169 -7.1 -17.9 0.7 —4.0

CER-POP 0.053 0.009 0.929 0.241 0.051 0.007 0.927 0.232 —3.6 -20.1 -0.2 -39

CER-EST 0.052 0.012 0.928 0.212 0.049 0.010 0.931 0.203 —4.7 —-19.0 04 —4.1
Model 4

MSE-POP  0.051 0.015 0.932 0.224 0.035  0.008 0.938 0.159 —321 —-484 0.6 —29.0

MSE-EST 0.052 0.020 0.914 0.197 0.035 0.009 0.929 0.142 —33.2 =547 1.6 —282

CER-POP  0.059 0.009 0.928 0.271 0.041  0.005 0.937 0.192 -31.2 —-495 10 —-29.2

CER-EST 0.058 0.013 0.930 0.237 0.039 0.006 0.942 0.170 -31.6 —545 1.3 —284

Notes:

(i) All estimators are computed using the triangular kernel, NN variance estimation, and two bandwidths (h and b).
(ii) Columns 7 and 7 correspond to, respectively, standard RD estimation and covariate-adjusted RD estimation;
columns “vV M SE” report the square root of the mean square error of point estimator; columns “Bias” report average
bias relative to target population parameter; and columns “EC” and “IL” report, respectively, empirical coverage
and interval length of robust bias-corrected 95% confidence intervals.
(iii) Rows correspond to bandwidth method used to construct the estimator and inference procedures. Rows “MSE-
POP” and “MSE-EST” correspond to, respectively, procedures using infeasible population and feasible data-driven
MSE-optimal bandwidths (without or with covariate adjustment depending on the column). Rows “CER-POP” and
“CER-EST” correspond to, respectively, procedures using infeasible population and feasible data-driven CER-optimal
bandwidths (without or with covariate adjustment depending on the column).
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Table SA-2: Simulation Results (MSE, Bias, Empirical Coverage and Interval Length), HC;
7 7 Change (%)
MSE Bias EC IL VMSE Bias EC IL VMSE Bias EC IL

Model 1

MSE-POP  0.045 0.014 0.935 0.196 0.046 0.014 0.933 0.195 0.4 -0.5 -0.2 —0.6

MSE-EST 0.046  0.020 0.910 0.169 0.046  0.020 0.909 0.169 0.4 -08 -0.1 -0.3

CER-POP  0.053 0.008 0.929 0.235 0.053  0.008 0.923 0.233 0.5 -1.8 —-0.6 —0.8

CER-EST 0.050  0.013 0.930 0.202 0.061  0.012 0.925 0.201 0.9 -22 -05 05
Model 2

MSE-POP  0.048 0.015 0.929 0.210 0.041  0.010 0.935 0.181 -164 -331 0.7 -—135

MSE-EST 0.050  0.020 0.911 0.186 0.041  0.012 0.921 0.161 —-18.2 366 1.2 —134

CER-POP  0.056 0.009 0.924 0.252 0.048 0.006 0.929 0.217 —-15.0 —-34.6 05 —13.7

CER-EST 0.055 0.012 0.928 0.222 0.046  0.008 0.933 0.192 -159 -36.0 06 —13.5
Model 3

MSE-POP  0.046 0.015 0.929 0.197 0.044 0.012 0.932 0.190 —5.0 —-184 03 -3.6

MSE-EST 0.048 0.019 0.910 0.175 0.044 0.016 0.916 0.168 -7.1 —-178 0.7 —4.0

CER-POP  0.053 0.009 0.923 0.236 0.051  0.007 0.924 0.227 —-3.6 —-20.1 0.1 -3.8

CER-EST 0.052  0.012 0.927 0.209 0.049 0.010 0.928 0.200 —4.7  —18.7 0.1 —4.1
Model 4

MSE-POP  0.051 0.015 0.929 0.222 0.035  0.008 0.938 0.157 —-321 —-484 09 —289

MSE-EST 0.052  0.020 0.913 0.196 0.035  0.009 0.930 0.141 -332 546 1.8 —283

CER-POP  0.059  0.009 0.926 0.266 0.041  0.005 0.931 0.189 -31.2 —-495 05 —29.1

CER-EST 0.058  0.013 0.929 0.235 0.039  0.006 0.936 0.168 -31.5 —54.0 08 —284

Notes:

(i) All estimators are computed using the triangular kernel, HC; variance estimation, and two bandwidths (h and b).
(ii) Columns 7 and 7 correspond to, respectively, standard RD estimation and covariate-adjusted RD estimation;
columns “vV M SE” report the square root of the mean square error of point estimator; columns “Bias” report average
bias relative to target population parameter; and columns “EC” and “IL” report, respectively, empirical coverage
and interval length of robust bias-corrected 95% confidence intervals.
(iii) Rows correspond to bandwidth method used to construct the estimator and inference procedures. Rows “MSE-
POP” and “MSE-EST” correspond to, respectively, procedures using infeasible population and feasible data-driven
MSE-optimal bandwidths (without or with covariate adjustment depending on the column). Rows “CER-POP” and
“CER-EST” correspond to, respectively, procedures using infeasible population and feasible data-driven CER-optimal
bandwidths (without or with covariate adjustment depending on the column).
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Table SA-3: Simulation Results (MSE, Bias, Empirical Coverage and Interval Length), HC»
7 7 Change (%)
MSE Bias EC IL VMSE Bias EC IL VMSE Bias EC IL

Model 1

MSE-POP  0.045 0.014 0.936 0.198 0.046 0.014 0.935 0.197 0.4 -0.5 -0.2 —0.6

MSE-EST 0.046  0.020 0.912 0.170 0.046  0.020 0.910 0.170 0.4 -08 -03 -0.3

CER-POP  0.053 0.008 0.934 0.239 0.053  0.008 0.928 0.237 0.5 -1.8 —-0.6 —0.8

CER-EST 0.050  0.013 0.932 0.205 0.050  0.012 0.929 0.204 0.8 -21 -04 -05
Model 2

MSE-POP  0.048 0.015 0.932 0.212 0.041  0.010 0.939 0.183 -164 -331 08 —135

MSE-EST 0.050  0.020 0.912 0.187 0.041  0.012 0.924 0.162 —-18.2 366 1.3 —134

CER-POP  0.056  0.009 0.927 0.255 0.048 0.006 0.932 0.220 —-15.0 —-346 06 —13.7

CER-EST 0.055 0.013 0.930 0.224 0.046  0.008 0.936 0.194 -159 -36.0 06 —13.5
Model 3

MSE-POP  0.046 0.015 0.931 0.199 0.044 0.012 0.934 0.192 —5.0 —-184 03 -3.6

MSE-EST 0.047  0.020 0.913 0.176 0.044 0.016 0.920 0.169 —7.2 —-17.8 08 —4.0

CER-POP  0.053 0.009 0.928 0.240 0.051  0.007 0.931 0.231 —-3.6 -20.1 0.3 -38

CER-EST 0.052  0.012 0.931 0.211 0.049  0.010 0.931 0.202 —4.7 —18.6 0.1 —4.1
Model 4

MSE-POP  0.051 0.015 0.930 0.224 0.035  0.008 0.940 0.159 —-321 —484 1.0 —29.0

MSE-EST 0.052  0.020 0.916 0.197 0.035 0.009 0.931 0.142 —-33.2 546 1.7 —283

CER-POP  0.059  0.009 0.929 0.270 0.041  0.005 0.933 0.191 -31.2 —-495 05 —29.1

CER-EST 0.057 0.013 0.932 0.237 0.039 0.006 0.941 0.170 -31.5 —-54.0 09 —284

Notes:

(i) All estimators are computed using the triangular kernel, HCy variance estimation, and two bandwidths (h and b).
(ii) Columns 7 and 7 correspond to, respectively, standard RD estimation and covariate-adjusted RD estimation;
columns “vV M SE” report the square root of the mean square error of point estimator; columns “Bias” report average
bias relative to target population parameter; and columns “EC” and “IL” report, respectively, empirical coverage
and interval length of robust bias-corrected 95% confidence intervals.
(iii) Rows correspond to bandwidth method used to construct the estimator and inference procedures. Rows “MSE-
POP” and “MSE-EST” correspond to, respectively, procedures using infeasible population and feasible data-driven
MSE-optimal bandwidths (without or with covariate adjustment depending on the column). Rows “CER-POP” and
“CER-EST” correspond to, respectively, procedures using infeasible population and feasible data-driven CER-optimal
bandwidths (without or with covariate adjustment depending on the column).
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Table SA-4: Simulation Results (MSE, Bias, Empirical Coverage and Interval Length), HCs
7 7 Change (%)
MSE Bias EC IL VMSE Bias EC IL VMSE Bias EC IL

Model 1

MSE-POP  0.045 0.014 0.943 0.203 0.046 0.014 0.941 0.201 0.4 -0.5 -0.2 —0.6

MSE-EST 0.046 0.021 0918 0.173 0.046 0.020 0.914 0.172 0.4 -08 -04 -0.3

CER-POP  0.053 0.008 0.939 0.247 0.053  0.008 0.936 0.245 0.5 -1.8 -0.3 -038

CER-EST 0.050  0.013 0.940 0.209 0.050  0.013 0.938 0.208 0.8 -21 -02 -0.5
Model 2

MSE-POP  0.048 0.015 0.938 0.216 0.041  0.010 0.941 0.187 -164 -331 03 -—13.6

MSE-EST 0.050  0.020 0.919 0.189 0.041  0.013 0.929 0.164 —-18.2 366 1.0 -—134

CER-POP  0.056 0.009 0.937 0.263 0.048 0.006 0.937 0.227 —-15.0 —-346 00 —13.38

CER-EST 0.054  0.013 0.933 0.229 0.046  0.008 0.944 0.198 -159 -36.0 1.1 —135
Model 3

MSE-POP  0.046 0.015 0.937 0.203 0.044 0.012 0.940 0.196 —5.0 —-184 03 -3.6

MSE-EST 0.047  0.020 0.917 0.178 0.044 0.016 0.923 0.171 —7.2 —-178 0.7 —4.0

CER-POP  0.053 0.009 0.937 0.247 0.051  0.007 0.937 0.238 —-3.6 -20.1 0.0 —-3.8

CER-EST 0.051  0.013 0.935 0.216 0.049 0.010 0.936 0.207 —4.8 —18.6 0.1 —4.1
Model 4

MSE-POP  0.051 0.015 0.938 0.229 0.035 0.008 0.944 0.162 —-321 —484 06 —29.0

MSE-EST 0.052  0.020 0.923 0.200 0.035  0.009 0.938 0.143 —-332 546 1.6 —28.3

CER-POP  0.059  0.009 0.936 0.278 0.041  0.005 0.940 0.197 —-31.2 —495 04 —29.2

CER-EST 0.057  0.013 0.936 0.242 0.039 0.006 0.947 0.173 -31.5 =540 1.1 —284

Notes:

(i) All estimators are computed using the triangular kernel, HC3 variance estimation, and two bandwidths (h and b).
(ii) Columns 7 and 7 correspond to, respectively, standard RD estimation and covariate-adjusted RD estimation;
columns “vV M SE” report the square root of the mean square error of point estimator; columns “Bias” report average
bias relative to target population parameter; and columns “EC” and “IL” report, respectively, empirical coverage
and interval length of robust bias-corrected 95% confidence intervals.
(iii) Rows correspond to bandwidth method used to construct the estimator and inference procedures. Rows “MSE-
POP” and “MSE-EST” correspond to, respectively, procedures using infeasible population and feasible data-driven
MSE-optimal bandwidths (without or with covariate adjustment depending on the column). Rows “CER-POP” and
“CER-EST” correspond to, respectively, procedures using infeasible population and feasible data-driven CER-optimal
bandwidths (without or with covariate adjustment depending on the column).
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Table SA-5: Simulation Results (Data-Driven Bandwidth Selectors), NN

Pop. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Model 1

b 0.144 0.079 0.167 0.192 0.196  0.222  0.337 0.041

b 0.144 0.078  0.166 0.190 0.196  0.221  0.319 0.041
Model 2

b 0.156 0.085  0.170 0.194 0.200 0.226  0.328 0.042

b 0.158 0.079  0.171 0.198 0.202 0.231  0.333 0.042
Model 3

b 0.156 0.086  0.169 0.193  0.199 0.225 0.333 0.042

b> 0.154 0.080 0.169 0.195 0.200 0.226  0.329 0.042
Model 4

b 0.156 0.084  0.170 0.195 0.200 0.227  0.321 0.042

b> 0.161 0.087  0.172 0.200  0.203  0.232  0.340 0.043

Notes:

(i) All estimators are computed using the triangular kernel, NN variance estimation, and two bandwidths (h and b).
(ii) Column “Pop.” reports target population bandwidth, while the other columns report summary statistics of the
distribution of feasible data-driven estimated bandwidths.
(iii) Rows b5 and bz corresponds to feasible data-driven MSE-optimal bandwidth selectors without and with covariate

adjustment, respectively.

78



Table SA-6: Simulation Results (Data-Driven Bandwidth Selectors), HCy

Pop. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Model 1

6% 0.144 0.085  0.167 0.191 0.196 0.222 0.326 0.041

h> 0.144 0.083  0.166 0.190 0.195  0.220  0.320 0.040
Model 2

b 0.156 0.088  0.169 0.195 0.199 0.226  0.322 0.042

b 0.158 0.087 0.171 0.198 0.202 0.230 0.337 0.042
Model 3

b 0.156 0.088  0.168 0.193  0.198  0.225  0.322 0.042

b> 0.154 0.084 0.169 0.194  0.199 0.225 0.322 0.041
Model 4

b 0.156 0.087  0.169 0.195 0.200 0.227  0.324 0.042

b> 0.161 0.092 0.172 0.199  0.202 0.230  0.333 0.043

Notes:

(i) All estimators are computed using the triangular kernel, HC; variance estimation, and two bandwidths (h and b).
(ii) Column “Pop.” reports target population bandwidth, while the other columns report summary statistics of the
distribution of feasible data-driven estimated bandwidths.
(iii) Rows b5 and bz corresponds to feasible data-driven MSE-optimal bandwidth selectors without and with covariate

adjustment, respectively.
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Table SA-7: Simulation Results (Data-Driven Bandwidth Selectors), HC»

Pop. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Model 1

b 0.144 0.085  0.168 0.192  0.197 0.223  0.326 0.041

h> 0.144 0.084 0.167 0.191  0.196  0.221  0.320 0.040
Model 2

b 0.156 0.088  0.170 0.195 0.200 0.227  0.323 0.042

b 0.158 0.087 0.172 0.199 0.202 0.231  0.337 0.042
Model 3

b 0.156 0.088  0.169 0.194 0.199 0.226  0.324 0.042

b> 0.154 0.085  0.170 0.195 0.200 0.226  0.321 0.041
Model 4

b 0.156 0.088  0.170 0.196  0.200 0.228  0.324 0.042

b> 0.161 0.093 0.172 0.200  0.203 0.231  0.333 0.043

Notes:

(i) All estimators are computed using the triangular kernel, HCy variance estimation, and two bandwidths (h and b).
(ii) Column “Pop.” reports target population bandwidth, while the other columns report summary statistics of the
distribution of feasible data-driven estimated bandwidths.
(iii) Rows b5 and bz corresponds to feasible data-driven MSE-optimal bandwidth selectors without and with covariate

adjustment, respectively.
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Table SA-8: Simulation Results (Data-Driven Bandwidth Selectors), HC3

Pop. Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.

Model 1
6% 0.144 0.086 0.169 0.194  0.198  0.225  0.326 0.040
h> 0.144 0.085 0.168 0.192  0.197  0.222  0.320 0.040
Model 2
b 0.156 0.089 0.171 0.197  0.201  0.229 0.325 0.042
b 0.158 0.088  0.173 0.200  0.204  0.232  0.338 0.042
Model 3
6% 0.156  0.090 0.171 0.196  0.201  0.228  0.326 0.042
b> 0.154 0.086 0.171 0.197  0.201  0.228 0.319 0.041
Model 4
b 0.156 0.089  0.172 0.198  0.202 0.230  0.325 0.042
b> 0.161 0.094 0.174 0.201  0.204 0.233  0.333 0.043
Notes:

(i) All estimators are computed using the triangular kernel, HC3 variance estimation, and two bandwidths (h and b).
(ii) Column “Pop.” reports target population bandwidth, while the other columns report summary statistics of the
distribution of feasible data-driven estimated bandwidths.

(iii) Rows b5 and bz corresponds to feasible data-driven MSE-optimal bandwidth selectors without and with covariate
adjustment, respectively.
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