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Abstract

In baseball, home runs are seen as important human achievements. When a game
includes a home run, the event influences how the game is remembered. Moreover,
baseball’s history is regularly rewritten to highlight these accomplishments.

In a scientific journal article, statistically significant findings are seen as important
human achievements. When an article includes a statistically significant finding, the
event influences how the article is remembered. Moreover, scholarly literatures are
regularly rewritten to highlight these accomplishments.

In the late 20th century, the number of home runs—and significance claims—
increased at unprecedented rates. Initially, many observers interpreted these increases
as reflecting improved human achievement. Later, we learned that other, hidden factors
played a role.

In baseball, the hidden factor was anabolic steroids. The sport reacted by banning
steroid users from the game and by keeping the era’s leading home run hitters out of
its hall of fame.

In science, the hidden factor was the combination of a massive increase in comput-
ing power, which allowed researchers to run many statistical analyses, and professional
incentives that equated worthy science with ”statistical significance.” Given what we
now know about the process by which many significance claims were produced, we con-
tend that science can react constructively. To this end, we introduce a new framework
that can help scholars and other readers more accurately interpret empirical claims
from science’s ”steroid era.”

The framework has four main characteristics. First, it acknowledges the need to
carefully interpret past findings. Second, it expands the discussion of reliable science
beyond replicability, which increases its relevance to non-experimental studies. Third,
it distinguishes problems caused by model selection from problems caused by model
misspecification. Fourth, it proposes a way to interpret significance claims produced

under rapidly evolving levels of computing power.



1 Introduction

Scientific discoveries influence many decisions. These discoveries help people correct errors
and use information more effectively. Their cumulative impact is worldwide. Science has

changed how we live. For these reasons, science is a genuine human achievement.

What properties give science such power? An important factor is that science is built
from processes that evaluate causal, correlational, and existential conjectures with respect to
replicable logic and curated evidence. Science allows us to derive simplicity from complexity,

while sometimes revealing that what appears simple is actually complex.

Science has evolved over time. One notable aspect of this evolution is the role of statistics.
In the last fifty years, many scientists have taken a greater interest in statistics. This interest
has transformed many disciplines. It has changed scholarly norms about what kinds of data

and supporting materials are considered sufficient to validate a knowledge claim.

In the early part of this fifty-year period, statistical claims often took the form of descrip-
tive correlations. Subsequent generations of scholars emphasized multivariate modeling. In
this later era, many key findings took the form of statistically significant coefficients. Some
statistically significant claims gained iconic status. Producers of these claims often became

leaders in their fields.

At the same time that scientists became more interested in statistics, a related phe-
nomenon was occurring. Throughout this fifty-year period, scientists gained access to an
exponential increase in computing power. This change in access affected the types of statis-

tical analyses that a scholar could produce.

In the early 1970’s, for example, a researcher who wanted to produce results from a single
multivariate model had to move boxes of punch cards from her office to the computer center.
She then had to wait several hours for the results—during which time she would have had
time to pray that relatively minor punch card errors had not caused the process to fail.
The 1970s researcher could not afford the luxury of fitting many models. She had to specify
variables and models a-priori, so that she could communicate those to the technician at the

computer center who would execute the run.

By the late 1990’s, the situation was quite different. Increasingly sophisticated and ef-
ficient software for data management and statistical analysis proliferated. An empirical re-
searcher in the late 1990s could analyze many statistical models in a few seconds by pushing
a few buttons on the personal computer in her office. She could see results very quickly.

If the 1990’s researcher saw a result contrary to her expectations, she had a number of



tools at her disposal to explore other analyses that might produce a different outcome. She
could quickly explore variations of the model that omitted some variables, added others,
squared some, logged others, and interacted various variable combinations. The 1990s could
also easily “clean” the data on the spot by rescaling outcomes, excluding outliers, dropping
missing values. For the 1990s researcher, the final model was found via interactive trial-and-
error, where many of the decisions in the process were taken after seeing auxiliary statistical
inferences that revealed whether the candidate specification produced statistically signifi-
cant claims and/or effects in the “right” direction. In sum, the 1990s researcher had many

opportunities that the 1970s researcher did not.

The ability to more flexibly interact with data undoubtedly alleviated many of the bur-
dens that made empirical research in the early 1970s slow and rigid. Close interaction with
the data often reveals obvious patterns that directly inform sensible decisions at the analysis
stage. This greater dynamism and flexibility, however, comes with hidden costs. Standard
results taught in graduate schools hold when only one or few hypotheses are tested, and
when the statistical model is chosen independently of the data that will be used for final
analysis. When these practices are violated (e.g., if scholars use an interactive trial-and-error
process to find specifications that produce certain types of outcomes), they may inadver-
tently sacrifice the properties of statistical inferences that made them a source of scientific

legitimacy in the first place.

We assume that when these violations occurred, they were not the result of widespread
intentional dishonesty or malevolence. Rather, they were an understandable reaction to the
context of the time. Journal editors, article reviewers, and readers were part of a vast aca-
demic advancement ecosystem that assigned higher value to statistically significant claims
than they did to null results or descriptive analysis. As a result, scholars had strong pro-
fessional incentives to produce these types of claims. The combination of these incentives
with the technological revolution resulted in the mass production of statistical inferences, in

particular of statistically significant findings.

As the more statistical significance claims appeared, a scholarly vanguard raised im-
portant questions about how to interpret them. These concerns manifested in many ways.
They included questions about robustness, reproducibility, and replication. They include the
scholarly movement commonly known as “the causal revolution.” One result of these efforts
is a growing consensus that many published significance claims represent “false positives”
(Ioannidis, 2005).

Which leads to the question—how should we think of claims made in the era of cheap

and powerful statistical estimation programs? Can we now claim to “know” what scholarly



leaders of previous eras claimed to know? Are this era’s iconic findings worth teaching to
students? Are they valid enough to convey to the public and to policymakers? Or should
this work be ignored altogether?

In this paper, we offer a template for reinterpreting previous generations’ empirical work.
Our goal is to help readers draw more accurate understandings of what that era’s work did—
and did not—teach us. To clarify how we are approaching this problem, we first develop an
analogy. We then use the analogy to motivate a framework for more accurately interpreting
the previous era’s claim. The analogy draws a parallel between the “steroid era” in baseball
and the era in which scientists had increasing opportunity and motive to focus on statistically

significant findings.

In baseball, the “steroid era” describes a period in the late 20th century where players hit
an unprecedented number of home runs. This surge in baseball’s most focal accomplishment

increased interest in the sport and created a new generation of “stars.”

Observers of the sport offered various theories of the increase in home runs. Some pointed
to better training. Others inquired about changes in the physical properties of the ball (a.k.a.,
the “juiced ball” theory). As the surge continued, others suspected that a hidden activity was
fueling the surge. There were growing suspicions that the accomplishments represented not
true human accomplishment, but the products of hidden factors that violated conventional
understandings of how home runs were produced. As it later turned out, the surge was caused

by undisclosed steroids use.

Baseball has now revised its view of the “steroid era’s” alleged accomplishments. It
banned many of the era’s stars from playing the game. It has kept others from receiving
career honors, such as induction into the “hall of fame.” It has instituted a series of severe
penalties for people who engage in the practice today. The baseball establishment, and many
fans, now treats formerly iconic accomplishments as unworthy of recognition or celebration.
Baseball now sees the “steroid era” as a dark mark. Home runs, while now fewer in number,

are again regarded as products of genuine human accomplishment.

We contend that the practice of informal model selection through interactive trial-and-
error, and the mass production of statistical significance claims that resulted, play a role
analogous to the role of anabolic steroids in baseball. In decades of published papers, these
practices were not explicitly discussed or reported. Instead, the empirical findings were often
described as the product of a single empirical model and single analysis. Because statistical
inferences that emerge from interactive trial-and-error do not have the same properties as

statistical inferences performed on an a-priori model, significance claims that emerge from



this process need not have the same properties and meaning as significance claims that do not.
One important consequence is that some or many of the era’s findings may be false positives

and will not be replicated, and thus the knowledge that is built on them is questionable.

We offer a framework for reinterpreting empirical claims that were produced in science’s
“steroid era”. Our argument is related to prior arguments in the transparency and replication

literature, but makes three distinct contributions.

First, we link the properties of statistical inferences to the particular era in which they
were produced, showing that the interpretation of scientific findings likely depends on the
technologies and professional incentives of each era. We explicitly connect the computing
revolution, the easy availability of data, and the strong professional incentives that moved
scientific research away from descriptive and towards inferential analyses, to the paradigm
of statistical inference that must be used for interpretation. As a consequence, our argument
implies that earlier scientific findings of certain types are more likely to be replicated than

more modern findings of comparable types.

Second, our emphasis on the interactive process of trial-and-error distinguishes between
a process of trying multiple tests where the number of tests ran is known, from a process of
informal model selection where number of tests is not revealed to reviewers or readers of the
claimed results. This distinction between multiple testing and model selection has profound
consequences for our ability to interpret previous results and our ability to fix problems
where they occur. One implication of our work is that there are some claims where we can
use knowledge of researcher incentives and computing power to produce a more accurate
interpretation of the finding they produce. At the same time, we can characterize a set of
claims that are now impossible to interpret—and impossible to fix. Looking forward, more
comprehensive disclosure of the number of tests runs and the theoretical foundations of
model selection processes can help readers and reviewers interpret statistical claims more

accurately.

Third, our argument focuses on all scientific studies, not only randomized experiments,
as we distinguish model selection from model misspecification. This emphasis helps us make
predictions about which findings are more likely to be replicated. It also clarifies conditions
under which replication of a scientific finding reveals anything about whether the finding is
true. As many prior studies on replication and transparency focus on randomized controlled
trials, we believe our approach can help produce accurate interpretations of a broader set of

scientific claims.

This version of the paper offers empirical evidence consistent with our argument. An



analysis of 200 published papers using the American National Elections Studies (ANES)
published between 1970 and 2017 shows that the number of statistically significant claims
has increased dramatically, just as the number of non-inferential, descriptive analyses has
dropped. In future versions of this manuscript, we will include a replication of 50 studies—
10 studies per decade in the period 1970-2010—to establish whether, as we predict, the

replicability of prior findings varies by era.

The paper proceeds as follows. In Section 2, we offer a theory of how changes in comput-
ing power and costs affected scholarly abilities and incentives to produce significance claims,
distinguishing between the early and the modern era. In Section 3, we present a statistical
example to discuss the properties of statistical inferences in various scenarios, which cor-
respond to the eras discussed in Section 2. In Section 4, we present the analysis of ANES
papers between 1970 and 2017 to evaluate our theory’s predictions in terms of patterns
of frequencies and types of particular statistical results. Section 5 includes a discussion of
how our methods correspond to those taken by baseball’s effort to restore its own integrity.

Section 6 concludes. A technical appendix contains supporting information.

2 The Different Eras in the Production of Scientific
Knowledge

Computing power has increased exponentially in the last five decades. Moore’s law, according
to which the number of transistors per microprocessor chip roughly doubles every two years,
has been an empirical regularity since the 1970s. Intel’s first microprocessor in 1971 had 2,300
transistors. By 2010, the typical transistor count was in the order of the hundreds of millions.
Clock speeds followed roughly the same rates of increase until recently, and every one of the

last fives decades brought a smaller and more portable class of computers (Waldrop, 2016).

This radical increase in computing power was accompanied by an exponential decrease in
computer prices. This drop in prices made affordable, powerful personal computers and smart
mobile devices an essential feature of modern society. It transformed most aspects of human
life. Areas as disparate as travel, communications, defense systems, medical treatments,

movies, and music, have been radically altered by this technological evolution.

The production of scientific knowledge was also affected. For example, these advances
in technology made it possible for researchers to conduct increasingly complex, multifaceted
statistical analyses. In turn, these advances corresponded with increasing interest in, and use

of, statistical inference procedures in many academic disciplines.



2.1 The early era: punch cards, computer centers, and description

In the early 1970s, collecting and analyzing data was extremely costly. In this period, there
were neither personal computers nor internet connections. A researcher seeking to do so-
phisticated statistical analysis saw significant obstacles at both the data collection and data
analysis stages. An example of the costs of data collection is provided by Kurland and Mol-
gaard (1981), who describe the process needed to access the medical records of the Mayo
Clinic in 1970s. In order to gain access to the data, the investigator had to request the
physical transportation of the medical records from central storage to the medical-statistics
unit (using a dumbwaiter), provide a form listing the specific information needed from the
records, and wait until trained “abstracters” recorded the requested data from each patient

dossier.

In addition to the obstacles involved in accessing data, fitting a statistical model required
making the data “computer-readable.” This involved key punching the data onto computer
cards, and feeding these cards into a rudimentary computer. Only then could a researcher
proceed with the analysis. Hogman and Ramgren (1970) describe a complicated system of
colored punch cards specifically designed to produce blood-registry data in a computer-
readable format. Their goal was to computerize the centralization of blood transfusion ser-
vices in Sweeden. The cost of the computer routines was about $40,000 a year (equivalent to
roughly $266,000 today adjusting for inflation), and this was to run the computer only once
a week for three hours for the purposes of scanning the blood-donor registry. Other analyses
such as accounting routines were produced once a month. A blood-type list was compiled
twice a year. The computer center produced a punch card for each donor, which had to be
returned to the blood bank for updating; the distance between the computer center and the
blood banks could be up to 370 miles.

Given the obstacles and costs associated with statistical analyses, researchers had to
define the variables to be included, the subgroups to be analyzed, the observations to discard,
etc., before looking at the data. The technological conditions of this era were thus largely
consistent with a paradigm of statistical inference where models are specified a priori and
often independent of direct contact with the data. The analysis was performed in a computer
center, physically removed from the researcher’s office and from the data source. This way of
conducting statistical analyses fit well with the publication standards of this era. In this era,
publications often focused on descriptive evidence and did not require empirical studies to
include statistical inferences. In fact, as we document in Section 4, in the sample we analyze,
the proportion of tables devoted to descriptive (i.e., non-inferential) results has declined
fourfold since the 1970s.



2.2 The modern era: terabytes, personal super-computers, and

inferences

As decades progressed, this reality changed dramatically. Today, data availability and com-
puter power are immense. Accessing data no longer requires boxes of punch cards, dumb-
waiters, and abstracters. Datasets are now digital, stored in hard drives and shared among
researchers via internet connections and shared cloud services synchronized in real time with
personal computers. Even texts can now be stored electronically as matrices of words and
processed as numerical outcomes. Moreover, powerful computing now allows researchers to
perform hundreds or thousands of complex statistical analysis in seconds or minutes using
millions of observations on their personal laptops, without leaving their offices. This would
have sounded as science fiction to the technician feeding punch cards at the 1970s computer

center.

The evolution of big computing opened exciting new possibilities for scientific progress.
It multiplied opportunities for measurement, discovery, and exploration. These opportuni-
ties transformed how empirical scientific findings were produced. But the transformation
was not equal in all sciences. In the biomedical sciences, the dimensionality of data grew
rapidly due to advances in genomics and related fields. At the same time, external guide-
lines (such as from industry and the Federal Drug Administration) regulated many kinds
of scholarship. Exploratory practices became more formal. Statistical procedures evolved in
accordance with these guidelines and practices. In other sciences, data dimensionality was
initially lower, external standards were less prominent, and exploratory practices were less

formal. Perspectives on appropriate statistical practices evolved accordingly.

As an example, consider microarrays in genomics. In a microarray study, DNA or RNA
abundance is measured for thousands of genes simultaneously. The goal is to identify which
of those genes have expression levels associated with a particular disease (Dudoit et al.,
2003). To achieve this goal, the researcher tests, for each gene, the null hypothesis that the
gene’s expression level is not associated with the outcome of interest. The typical setup
thus involves testing hundreds or thousands of hypotheses, depending on how many genes
are explored. This setup is the canonical example of what Efron (2010) calls “large-scale”

inference.

It is well known that when researchers make hundreds or thousands of tests, the classical
statistical setup fo testing a single a-priori null hypothesis is not appropriate. A central
concern is making false discoveries—concluding that an association exists when in fact it

does not. Imagine that a researcher tests 1,000 null hypotheses, and unbeknown to her, all



of them are true. Nonetheless, if she uses a statistical test where the (marginal) probability
of rejecting each individual null hypothesis is at most 5%, she will “discover” 50 exciting

associations, none of which will be real.

As we discuss below, there are very well developed tools to control the probability of false
discoveries or rejections in this case. These tools address the challenges posed by large-scale
inferences, and allow researchers to explore in a statistically safe way. All of these methods,
however, require the researcher to know the total number of tests performed, and use this
number for adjustment. Without information on the total number of tests, controlling the

probability of making false discoveries is impossible.

In medical and biological sciences, many researchers are well aware of the challenges of
drawing sound conclusions from a multiplicity of tests. Best practices entail adjusting their
inferences accordingly. Because in these sciences the exploration step is often explicit, the
total number of tests performed (e.g. the total number of genes explored) is expected to be

stated in advance, or at the very least used for adjustment ex-post.

For example, Food and Drug Administration (FDA) guidelines for clinical trials of human
drugs address this problem explicitly. They discuss various adjustments for multiplicity to
help researchers avoid drawing false conclusions about drug effectiveness. In these guidelines,
it is assumed that the total number of tests performed is pre-specified before the trial even

starts (and thus before the data to be used for analysis even exists).

Common practices in empirical social sciences are different. In political science, eco-
nomics, and related disciplines, it is standard for researchers to engage in a much more
informal exploratory process before settling into a final model. This is particularly true for re-
searchers who work with nonexperimental or observational designs, for which pre-registration
is difficult or impossible. It is also true for scholars who analyze experimental designs but do
not present a pre-analysis plan. In both contexts, it is common for researchers to make many
decisions, more than a few of which are made after seeing the results of previous analyses of
the same data. These decisions include subsetting, removing outliers, including fixed effects,
looking at subgroups or interactions, transforming the outcome, including covariates, and
more. The result is a collection of analyses, including hypothesis tests, confidence intervals,

etc., that are not planned or stated in advance.

This kind of exploratory analysis would fit directly into the large-scale inference frame-
work if researchers kept track of the number of statistical tests performed. Quite often,
however, the exploration stage is quite informal, and researchers do not report the total

number of tests carried out from the beginning of a project until the work is complete. In



fact, we suspect that many researchers would not even know how many tests were run. We
do not believe this practice arises from an intention to cheat, but is rather the consequence of
the combination of various factors governing the academic advancement ecosystem. Simmons
et al. (2011) cite several factors behind the ubiquitousness of this practice. They include the
human tendency for confirmatory bias and strong professional incentives to produce research

findings that show nonzero effects.

In the last five decades, professional incentives have changed. Many scientific communities
place most of an article’s value on whether it shows “effects”. Statistical significance claims
became particularly influential. Hence, many ambitious scholars wrote papers that were
centered around rejecting null hypotheses. Significance claims became increasingly valuable

and academic advancement ecosystems evolved to reward their production.

The simultaneous evolution of these strong professional incentives and the computing
revolution had direct consequences for the way in which scientific knowledge was produced
and interpreted. In sciences where exploration was explicit and documented, inferences were
adjusted in ways that facilitated accurate interpretation. In those sciences where exploration
stayed informal, key properties of inferences more difficult to interpret—and may, in some

cases, be unknowable.

When empirical research includes multiple tests and analyses during a process of interac-
tive trial and error, when only one or few of these is reported, and when the total number of
tests conducted is either unreported or unknown, the problem of multiple testing becomes a
problem of model selection. Developing procedures for valid inference in these circumstances
is very challenging. Depending on the procedure used for model selection, and how much
information about selection step is shared or known, the challenges can be so severe as to in-
validate statistical inferences altogether. We fear that a non-negligible proportion of findings

in the social sciences fall in the latter category.

In the next section, we present an example to illustrate these challenges, and the dis-
tinction between the various concepts of multiple testing, model selection, replication and

misspecification.



3 Statistical Inferences in the Early vs. Current Eras!'

We follow the example in Leeb et al. (2015), and consider a model of n observations following

a standard Normal distribution with mean p € R"

y=pu+e, (3.1)

where ¢ ~ N (0, I,,). For simplicity, we assume that 0 = 1. We have p available covariates

or explanatory variables, collected in the n X p matrix X.

We consider a family M of full column rank models, where in each model y is re-
gressed on a subset of covariates in X. Each model is described by the set of indexes M =
{jl, o ,j|M‘} C {1,2,...,p}. Letting X refer to the jth column of X, X, = (Xj,,. .. s X))
denotes the columns of X that are included in model M (i.e., the columns of X whose indices
lie in M), where |M]| is the size of M. The setup assumes that M is nonempty, and that all

models considered are full rank.

We consider different scenarios, according to whether the researcher chooses the model
prior to analyzing the data that will be used for estimation and inference, or she engages in
a more exploratory analysis, where the relationships of interest will be, in part, dictated by
the data. Each one of this scenarios corresponds to a stylized representation of the eras we

discussed in Section 2.

Scenario 1: Single test with a priori model

In the first scenario, only one model is analyzed, and this model is selected before exploring
the data that will be used to perform estimation and inference. This corresponds to the 1970s
era, where models were often decided a-priori and interactive trial-and-error was prohibitively

costly.

The researcher chooses the model M from the family of possible models M:

y = XufBum +vm (3.2)

In 3.2, the parameter of interest is the population coefficient 8y = (X, X)X} pt-

The researches calculates the least squares estimator 3y = (X0, X)Xy

IThis section is still in progress. The notation, models and discussion will be modified

10



We let 8,y refer to the regression coefficient associated with covariate X; in model M.
In particular, we assume the researcher is interested in the partial average effect of X; on y;
thus, the coefficient of interest is 1),. Because in this scenario the researcher considers only

one model, which is fixed and determined a-priori, we drop M from the notation.

The researcher tests the null hypothesis Hy : $; = 0 using the test statistic

T = Bl/sb

where s; is the standard error of BAl, $] = \/[(XEWXM)*]M, and we omit the subindex

from T for simplicity. T" follows a standard normal distribution,

Thus, using significant level v = 0.05, the researcher rejects the null hypothesis if

T| > Z1-0.05/2

The two-sided p-value is

p=P(T >t]| Hy)=1-20(|T])

and the probability that the test statistic is greater than or equal to the observed value

when the null hypothesis is true is at most 5%:

P(|T| > Z1_0.05/2 | Ho) <0.05

Thus, the probability of Type I error is controlled, and frequentist inferences can be

interpreted in the usual way.

Scenario 2: Multiple tests with a priori model

This scenario is similar than above, except that that the researcher is interested in the effect
of Xy on multiple outcomes of interest, which we index by k, with £ = 1,..., K. We still
assume that for each outcome 1, we fit the same model M, that is, we regress each outcome

on the same covariates X ;. Again, because M is fixed, we drop it from the subindex.

We now have a collection of K test statistics,

Tkzglk/sm, k=1,...,K

11



corresponding to the K null hypotheses

Hokiﬁlkzo, kzl,,K

The well known problem of multiple testing or multiple comparisons is that the probabil-
ity of rejecting one or more null hypotheses among the K hypotheses increases very rapidly
with K. For example, if the test statistics T}, are independent and o = 0.05, the probability
of making at least one false rejection is 1 — (1 — 0.05)%. This probability is approximately
0.40 when K = 10, 0.64 for K = 20, and is above 0.80 for any K > 32.

Thus, in any setting where the number of hypotheses tested is large, the naive procedure
that ignores the multiplicity of tests and rejects Hj whenever p, < « will lead to a large

number of incorrect rejections or false discoveries.

This problem is easy to fix. There are multiple procedures that can be used to test large
numbers of hypothesis while controlling the probability of making at least one false rejection,
usually known as the Family-Wise Error Rate (FWER). One of the simplest methods is
Bonferroni’s, according to which one rejects those Hjs that have associated p-value below
a/ K. Bonferroni’s procedure ensures that the FWER in testing K simultaneous hypotheses

is at most «.

A very large literature in statistics has proposed various alternative methods to control
the FWER, most of which seek to improve on the power of Bonferroni’s procedure while
still controlling the FWER (see, e.g., Lehmann and Romano, 2005). A seminal piece by
Benjamini and Hochberg (1995) proposed to focus on controlling a different criterion, the
False Discovery Rate (FDR).

For our discussion, the important point is that if the researcher is explicitly and formally
engaging in multiple testing, there are multiple criteria that can be used to control the
desired error and adjust inferences accordingly. The main characteristic of this scenario is
that despite performing thousands of tests, the researchers keeps/reports the results for all

of them, and draws conclusions that depend explicitly on the number of tests conducted.

Scenario 3: Multiple tests with model selection

A much more complex situation occurs when the researcher consider a multiplicity of tests

but does so in a way where the total number of tests is not known

12



The scenario we consider now is one in which the researcher tries several specifications, but
only reports the results from those misspecification where the effect of interest is statistically
significant at 5% —that is, has p-value less than or equal to 0.05. We continue to assume
that the researcher is mainly interested in i, and will pay close attention to the p-value
associated with the test of the null hypothesis Hy : 5; = 0.

It is well known that selecting the model to be reported on the basis of whether the
null hypothesis of interest is rejected invalidates the usual interpretation of hypothesis tests
and confidence intervals. An extreme case occurs when the true value of (3 is zero, and
the researcher reports only those models where p <= 0.05; in that case, the proportion of

reported confidence intervals that cover the truth will be exactly zero.

This extreme case is likely not the most common in practice. When researchers set out to
investigate empirical relationships and test hypotheses, they do so informed by prior studies,
theoretical knowledge, and informed intuitions. Thus, a more plausible scenario is one in

which the parameter ; is nonzero, albeit its magnitude is unknown.

To explore how inferences are affected in this case, we performed simulations of model
above, where we vary the true value of §;. We let 8, take the 201 distinct values in the set
[0,0.01,0.02,...,0.198,0.199,0.20]. For each (3, we generate 50 datasets according to 3.2,
testing in each case the hypothesis that 5; = 0, and reporting a 95% confidence interval only
if the p-value is 5% or below. We then calculate the proportion of these reported confidence
intervals that cover the true [;—the conditional coverage. We repeat this procedure 500
times, and calculate the average conditional coverage across the 500 simulations. Our simu-

lations are inspired by the examples and simulations discussed by Benjamini and Yekutieli
(2005).

Figure 3.1 shows the results, plotting for each true value of (3;, average proportion of
reported confidence intervals that cover it. The red dots show the result of the procedure
just described (the blue dots show the analogous procedure when the p-value used in the
selection rule and the confidence interval are is Bonferroni-corrected). The pattern is clear:
reporting confidence intervals only for those parameters that are estimated to be statistically
significant destroys coverage. Naturally, when the true (3 is zero, the proportion of times it
is covered by the confidence interval whenever this interval is reported—that is, the number
of times the parameter is covered by the confidence interval divided by the number of times
it is selected, is zero. This selective coverage increases as the true 5, moves further away

from zero, until it eventually reaches 95%.

The important point is that, even when each marginal confidence interval is level 95%,

13



the conditional coverage after selection cannot be controlled (see Benjamini and Yekutieli,
2005, for a thorough discussion of this point). In the most extreme case, it can be as small
as zero. And for a wide range of f3;s, it can be drastically below 95%. The actual coverage
depends on the true value of 31, which is of course unknown. Thus, a researcher that reports

confidence intervals after selection cannot provide any guarantees about their conditional

coverage.
Figure 3.1: Simulation of Coverage After Model Selection
o
i A !MWWW
- T 5T s B -
000’0 W
P P i
3
o of
g 2 S
Re) o " ”~»
S
= o 7
s
g 0
° o .
O ..
:qc_)‘ * &
S .
& x4 e
= o .
5 s
[ [
R .
’g- -
o o .
a ©° ¢
»
*
»
&
N + Unadjusted CI
S o e + Bonferroni-adjusted Cl
T T T T T
0.00 0.05 0.10 0.15 0.20

True beta

The Role of Misspecification

In conversations about research integrity—or how best to interpret statistical significance
claims—the focus is typically the phenomenon of informal model selection by which re-
searchers’ use of their degrees of freedom to arrive at the final model by interacting with the

same data that they will use for the final analysis. These conversations typically focus on
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experimental designs, where the researcher randomly assigned a treatment and is interested
in the effect of this treatment on one or more outcomes of interest. The focus on randomized
controlled trials (RCTSs) allows scholars to assume that the multiple statistical models that
may be examined in the process of trial and error are all correctly specified. The typical
scenario is one in which a researcher examines at the effect of the treatment on the outcome,
examining a linear regression model with and without covariates. Because the covariates are
orthogonal to the treatment in expectation, their inclusion or exclusion does not typically

affect the parameter that is being estimated.

The research integrity literature’s focus on RCTs has given the impression that the chal-
lenges to replication apply mostly to experimental designs, and that the discussion about
replicability and interpretation of statistical inferences has as a prerequisite an analysis that
is based on a specification that is known to be correct. This has had the unintended con-
sequence of mostly excluding non-experimental studies from the conversation on research

ntegrity.

However, nothing in our prior discussion depends on having a correctly specified model
in the sense of having an estimator that is consistent for the population effect of interest.
Consider again our example, where our interest was in (), in model 3.2. By construction,
this population parameter is By = (X}, X)L X}, 1, that is, the orthogonal projection of p
as defined in 3.1 in the columns of X,;. Under the usual regularity assumptions, the least
squares estimator BM = (X}, Xar) 1 Xy is consistent for 3y,. But it is only when u = X8y
that the model is correctly specified and we can give 3,; the causal interpretation of partial

effect of X,;. That is, it’s only when p = X8, that the estimator B\M is consistent for

OE(y| X )

= O (33)

The relevant distinction is one between [, as an estimator of the best linear predictor,
and [y as a causal effect. But the interpretation of the population parameter ; is unrelated

to the interpretation of statistical inferences based on BAl

4 The Evolution of Empirical Analyses in Political Sci-
ence: 1970-2010

In this section, we illustrate the over-time trend of statistical claims in the field of political

science by analyzing the findings in the papers that were published between 1970 to 2017.
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Because specific traits of data (e.g. sample size, survey administration procedure) can influ-
ence the ability to produce statistically significant findings, we controlled the data type by
analyzing the papers in the ANES (American National Election Studies) bibliography. Since
ANES is one of the major data archives for political science, the set of papers using the

ANES as the data source can reflect the overall trend of the empirical findings in the field.

Our premise is that interpreting prior results exactly as stated—or ignoring them altogether—
is inconsistent with the most reasonable conclusions we can draw about the manner in which
evolving research practices affected the content of statistical empirical claims. Thus we hy-
pothesized that the cost of evaluating additional empirical models decreased over the decades
in which political science journals began to regularly publish empirical claims. We expected
that, over time, the costs of increasing the number of model specifications—(1) having greater
number of tests (e.g. adding control variables in a regression model), (2) targeting thresh-
old p-values (e.g. report greater number of tests that are significant at the 5% level)—have

declined over time.

Regarding selecting the studies to be analyzed, we started from the ANES bibliography
(1970-2017) that was retrieved on July 11, 2017 (initial number of observations = 7,028).
To constrain the sample to have only journal articles, we deleted the studies of different
publication type (e.g. book, newspaper article, dissertation thesis, conference paper, respon-
se/review paper) by dropping the observations with relevant terms (e.g. “annual meeting,”

PRENA4

“university press,” “edited by,” “reply”) ? With the resulting list of 2,312 observations, we
randomly selected 40 observations by decade (1970-1979, 1980-1989, 1990-1999, 2000-2009,
2010-2017) for a total of 200 observations. We randomly selected additional 30 observations
by decade as potential substitutes. If a paper in the selected list is not a research paper (e.g.
response/review paper) that was not sorted out, or its content cannot be found on-line, then

it was replaced by a paper from the substitute list.

Using the 200 observations that were randomly selected by decade from the ANES bib-
liography, we collected the following information to test our hypotheses. The specific rules
that were used to extract the information are available in Appendix #.

e Paper-level: number of tables, number of plots

e Table-level (each table within a paper): type (descriptive, inferential, neither descriptive

nor inferential), number of tests, number of models

e Model-level (each model within a table): type of statistical model/analysis (e.g. OLS,

2The entire procedure is available in Appendix #.
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logit, probit, t-test, likelihood ratio test etc.), number of covariates, number of signif-
icant coefficients at the 10%, number of significant coefficients at the 5%, number of

significant coefficients at the 1%, one-tailed test

We use these 200 observations to produce descriptive statistics by decade, in order to
establish raw patterns regarding the evolution of inferential analysis in the subset of published
papers that use the ANES data. A first approach to this analysis is to understand if the
number of tables in a paper has changed drastically over time, since papers have become
more complex. Figure 4.1a shows that the average number of tables has remained more or
less constant over time, only falling sharply in the 2010s. In the five decades of our analysis
the average number of tables ranges between 3.33 and 4.5. This is probably a consequence
of the space limitation imposed by journals, which has not changed by much over time. The
number of plots in a paper has been more erratic. Figure 4.1b shows that the average number
of plots was higher in the 1970s, then fell from an average of 2.9 plots per paper to 1.08 plots
per paper in the 1990s, and then rose again to almost 3.75 plots per paper in the 2010s.

Figure 4.1: Number of Tables and Plots per Decade
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Our main interest lies in understanding the pattern between descriptive and inferential
analysis, and whether descriptive analyses was progressively displaced by inferential ones. In
order to do this, we classify each table as descriptive, inferential, or neither. A descriptive
table is one that has some descriptive measures of the data (mean, median, minimum, etc.)
but makes no inferential tests. A table classified as inferential is one that has some statistical
test and reports a p-value or a confidence interval. Finally, a table classified as neither of those
is one that does not contain any description or the data and also does not contain any type

of statistical test. Figure 4.2 shows the average proportion of tables by type (descriptive,
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inferential or neither) over time. In the 1970s almost 79% of the tables of a paper were
descriptive, while almost 16% were inferential. This pattern has been changing monotonically
in time, and in the 2000s almost 73% of the tables in a paper are inferential while almost
23% of the tables are descriptive. The pattern changes from the 2000s to the 2010s, but we
will argue later on this section that the latest decade suffers from some issues that do not

make it easily comparable with the previous ones.

Figure 4.2: Proportion of Tables by Type

Decade

® Descriptive Tables @ Inferential Tables ® Neither

If it is true that the increase in computer power over time and the fall of its price changed
the cost of doing inferential analysis, we should see specific patterns in the data. Figure 4.2
showed that inferential tables have been displacing descriptive ones, but is it also true that
papers are doing more statistical tests? And if that is the case, is it true that more significant
coefficients are being reported? Figure 4.3 sheds some light on these questions. The average
number of tests has increased from almost 35 in the 1970s to almost 115 in the 2000s as shown
by Figure 4.3a. That is, on average a paper in the ANES literature reported more than three
times the number of tests in the 2000s in comparison to the 1970s. On the other hand, the
average number of significant coefficients (at 10, 5 or 1%) has also increased monotonically

as shown by Figure 4.3b.

In sum, the pattern shows that papers are reporting more inferential tables, more tests
overall, and more significant coefficients over the decades. But it would be possible to argue
that the number of significant coefficients has risen as a consequence of the rise of the number
of tests. If that is true, we should see that the ratio of significant coefficients to the number
of tests is more or less flat over time. That is not the case, as Figure 4.4 illustrates. In the

1970s, on average, almost 14% of the reported tests were significant at least at 10%, while
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Figure 4.3: Number of Tests and Number of Significant Tests
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for the 1990s and 2000s this number was almost 48%. This might be an indication that
researchers were better at formulating the hypothesis they wanted to test, or that since it
was easier to test hypothesis they were being able to test more hypotheses and show a larger

number of tests with significant results to the audience.

Figure 4.4: Significant Tests to Total Number of Tests Ratio

Decade

The last period in the plots, 2010-2017, should be interpreted with caution for two rea-
sons. First, it is posterior to the initiation of the transparency debate. It is possible that
researchers in social sciences were already aware of the issues caused by multiple testing and
incorrectly done model selection, and started to correct their practices. Second, there is a
feature of the ANES bibliography that is worth noticing. The share of papers in our sample

that was published in one of the three top journals in Political Science—American Political
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Science Review, American Journal of Political Science and Journal of Politics—decreases
dramatically in the 2010s. In the first three decades roughly 35-40% of the papers in the
ANES bibliography were published in one of these three top journals. In the 2000s, this
percentage drops to less than 30; finally, in the 2010-17 period, the percentage is almost
0%. This shows that the journal composition in our sample changes dramatically in 2010-
2017, which may translate into a change in the kind of papers in this period and affect the

comparability with other decades.

5 Discussion: What We Can Learn From The Steroid
Era In Baseball

For over a century, Americans have spent many summer afternoons and evenings watching

or listening to baseball games. Baseball games have an uneven rhythm.

The rhythm is partially serene. The game is played on a wide-open green field. The fields
in professional baseball vary in size but cluster around a size of two and a half acres. From
the vantage point of the fan in the stands, this two-and-half acre field—with its deep green
grass punctuated with avenues of sand, with it’s four white or dirt-stained bases, with it’s
elevated pitcher’s mound and with its few chalk lines—is virtually empty for most of the
game. When the game is in play, the entire population of two-and-a-half acre field is nine
players from the defense, three or four umpires, one or two coaches for the offense, a batter
from the side on offense, and the offensive side’s player waiting-to-bat. For most of the game,
most of the twenty or so people who are on the two-and-a-half acre field are standing still.

They are waiting for something to happen.

The rhythm is also electric. Electricity is triggered by the crack of a wooden bat hitting
a ball made of leather, yarn and rubber. The ball’s rapid ascent into the sky. A moment of
breathlessness. Everyone in the stadium asking themselves: Where is it going to land? Then,
the destination becomes clear. The ball is going to...leave the field of play. It overtakes the
distant wall. For a moment, the accomplishment subsumes the game itself. The large green

silence to surrenders the electricity. The crowd roars (or groans). This is the home run.

Home runs constitute the highlights of many baseball games. Players who hit them be-
come stars of the moment. For players who can hit a lot of home runs over longer periods of
time, greater glory awaits. It is no longer the narrative of the game that is written around
their work, it is the history of the game itself. Babe Ruth, Roger Maris, Hank Aaron. They

are not written into the history as much as they become icons of that history. Their bodies
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Table 4.1: Descriptive Statistics

Variable Decade Mean Median Std. Deviation Min Max N
Number of Tables 1970 4.50 4.00 3.33 0 14.00 40
Number of Tables 1980 4.28 4.00 2.06 1 9.00 40
Number of Tables 1990 4.05 4.00 247 0 12.00 40
Number of Tables 2000 4.25 4.00 2.19 0 10.00 40
Number of Tables 2010 3.33 3.00 2.79 0 16.00 40
Number of Plots 1970 2.90 0.00 4.54 0 21.00 40
Number of Plots 1980 1.30 0.00 2.64 0 13.00 40
Number of Plots 1990 1.08 0.00 2.55 0 14.00 40
Number of Plots 2000 2.60 1.00 4.37 0 23.00 40
Number of Plots 2010 3.75 2.00 5.03 0 21.00 40
Proportion of Descriptive Tables 1970 0.79 1.00 0.33 0 1.00 36
Proportion of Descriptive Tables 1980 0.56 0.59 0.37 0 1.00 40
Proportion of Descriptive Tables 1990 0.49 0.50 0.31 0 1.00 37
Proportion of Descriptive Tables 2000 0.23 0.20 0.24 0 0.75 39
Proportion of Descriptive Tables 2010 0.38 0.33 0.37 0 1.00 36
Proportion of Inferential Tables 1970 0.16 0.00 0.32 0 1.00 36
Proportion of Inferential Tables 1980 0.42 0.39 0.38 0 1.00 40
Proportion of Inferential Tables 1990 0.49 0.50 0.32 0 1.00 37
Proportion of Inferential Tables 2000 0.73 0.80 0.30 0 1.00 39
Proportion of Inferential Tables 2010 0.57 0.67 0.37 0 1.00 36
Proportion of Non-Descriptive and Non-Inferential Tables 1970 0.05 0.00 0.11 0 0.50 36
Proportion of Non-Descriptive and Non-Inferential Tables 1980 0.02 0.00 0.09 0 0.50 40
Proportion of Non-Descriptive and Non-Inferential Tables 1990 0.02 0.00 0.06 0 0.25 37
Proportion of Non-Descriptive and Non-Inferential Tables 2000 0.04 0.00 0.11 0 0.50 39
Proportion of Non-Descriptive and Non-Inferential Tables 2010 0.05 0.00 0.13 0 0.50 36
Number of Tests 1970 35.22  54.00 33.93 0 120.00 40
Number of Tests 1980 56.95 54.00 48.35 0  208.00 40
Number of Tests 1990 79.97  63.00 70.85 0  302.00 40
Number of Tests 2000 114.53  86.50 92.82 0 422.00 40
Number of Tests 2010  101.57  78.00 98.30 0 546.00 40
Number of Significant Coefficients 1970 4.18 0.00 11.29 0 51.00 40
Number of Significant Coefficients 1980 21.48 14.50 30.09 0  149.00 40
Number of Significant Coefficients 1990 40.60  26.00 41.60 0 134.00 40
Number of Significant Coefficients 2000 64.40  37.50 84.31 0  464.00 40
Number of Significant Coeflicients 2010 46.72  42.00 49.96 0  269.00 40
Significance Coefficients to Number of Tests Ratio 1970 0.14 0.00 0.26 0 1.00 24
Significance Coeflicients to Number of Tests Ratio 1980 0.34 0.33 0.25 0 0.85 32
Significance Coefficients to Number of Tests Ratio 1990 0.48 0.50 0.24 0 098 33
Significance Coefficients to Number of Tests Ratio 2000 0.48 0.48 0.28 0 1.26 38
Significance Coefficients to Number of Tests Ratio 2010 0.45 0.52 0.27 0 1.00 33
Proportion of Papers in Top Polisci Journals 1970 0.40 0.00 0.50 0 1.00 40
Proportion of Papers in Top Polisci Journals 1980 0.38 0.00 0.49 0 1.00 40
Proportion of Papers in Top Polisci Journals 1990 0.35 0.00 0.48 0 1.00 40
Proportion of Papers in Top Polisci Journals 2000 0.28 0.00 0.45 0 1.00 40
Proportion of Papers in Top Polisci Journals 2010 0.03 0.00 0.16 0 1.00 40
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of work are not written into the history as much as the history is rewritten around their

bodies.

Players from competing teams, younger players, and children seek to emulate these stars
and these moments. They share dreams of being these icons. They rethink their methods.
They change how they prepare. All in pursuit of a dream. Of clearing the walls at key

moments. Achieving fame, influence, and glory.

In the late 1980s, after 11 decades of professional baseball in America, something fas-
cinating happened. Certain players started hitting home runs at a pace never before seen
in the history of the game. The balls traveled faster and farther. They cleared the fences
with greater frequency. It was very exciting. The surge altered baseball’s ratio of electric-
ity to serenity. The nation was enthralled as multiple players threatened the most iconic

performance records of baseball’s historic high priests. Down they went.

In 1998, Mark McGuire and Sammy Sosa spent the late summer converging on the record
for most home runs in a season (61). Both players shattered the record. In that season,
McGuire hit 70 home runs. Sosa hit 66 home runs, which is 26 more than he had ever hit in

any past season.

The surge did not end there. Many players experienced sudden surges in their ability to
hit home runs. Three years later, in fact, Barry Bonds broke McGuire’s record, hitting 73
home runs in a season. Bonds would go on to pass baseball’s grandest legends, Babe Ruth

and Hank Aaron, to hit the most home runs in an American professional baseball career.

During this era, people asked many questions about how and why the surge was happen-
ing. Multiple theories abounded. There were uncontroversial theories built on the fact that
players were training differently. More controversial explanations included the “juiced ball”
theory—the idea that someone had intentionally or unintentionally changed the baseball’s
physical constitution to make it travel farther. A number of organizations conducted research

on the juiced ball theory. Ultimately, “juiced ball theory” could not be supported.

What led to the sudden surge in performance? The sudden increase in some practitioners’
abilities to hit home runs. Another explanation was circulating. The idea was that some
players were engaging in a secret practice—or at least one that they were hiding from fans.
This practice had nothing to do with a change in the field of play or a change in the ball. It
was a change that, in the hands of someone sufficiently skilled in the art, could make players

appear stronger and more vital than their bodies would otherwise allow.

Investigations began. Investigators acquired more data about past practices. Their at-

tention began to focus on another explanation of the surge in home runs—anabolic steroids.
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Anabolic steroids stimulate muscle building. They produce greater muscle mass per unit
of exercise which can increase strength and hasten recovery from certain types of injury.
They also have well known negative effects. These effect range from the relatively innocuous

(increased acne) to deadly (kidney, liver, and heart malfunction).

The temptation to use steroids was great for some players. Leading home run hitters
gained greater wealth and fame. During the peak of baseball’s steroid era, McGuire, Sosa,
and Bonds were among America’s most famous athletes. A lingering concern about steroid
use is not just that the lure of wealth and fame would lead other professional baseball
players to begin the practice, but that the incentives would spread further—into minor
league baseball, college baseball, high school baseball, and even little league. In these latter
venues, the long-term effects of steroids were just as likely (and, in fact, increased for children
at certain developmental stages)—while the monetary rewards for taking such risks were fare

less likely.

Other players declined to use steroids. For example, in the years prior to the McGuire-
Sosa-Bonds-led home run explosion, Ken Griffey Jr was one of baseball’s most famous players
and productive home run hitters. In the steroid era, his body did not undergo the massive
and very visible transformations of his rivals. During that time, his accomplishments were
overshadowed by the players who were employing a hidden factor to increase their numbers.
While evidence has emerged tying other leading players to steroids, such evidence has not

arisen regarding Griffey.

Today, Ken Griffey Jr is the only one of the players named in this article to be in baseball’s
Hall of Fame. The other players are now seen differently. They are seen as having played by
a different set of rules. They are seen as having deceived others about how they were getting

their results.

As conversations about scientific transparency and related topics evolve, it is only nat-
ural to ask questions about how scientific disciplines should interpret their legacies. These
questions are not just of theoretical interest. Increasing numbers of studies are showing sub-
stantial negative implications accruing from the mass production and distribution of “false
positives.” In the field of cancer oncology, for example, faulty empirical practices produced
false positives which in turn caused thousands of doctors and patients to place false hope
in faulty practices and medicines—faults that would have been apparent if researchers were
more forthcoming about how they produced results. If we believe that our work is socially
valuable and consequential, then we should also be concerned about the effects of false pos-

itives from our own fields of research on the populations that we are attempting to serve.
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We operate from the assumption that most, if not all, scholars who engaged in interactive
trial-and-error to guide their empirical analysis did not do so out of malice. We appreciate
that, over a series of decades, the combination of dramatic technological change and new
professional incentives evolved in ways that made this practice natural and socially accept-
able. Many fields of study had too few people who understood the statistical and inferential
errors entailed in the production of such claims. Moreover, in the pre-Internet era, those
few who did understand had limited ability to document the process, correspond with other
experts about it, or propose remedies. So, we do not advocate following baseball’s path in
the treatment of prior generations. Becoming a scholar is very difficult. It is reasonable to

assume that most people were doing the best with the opportunities and incentives that they
had.

Today, however, we know more. We know that producing a statistical claim through an
interactive process of trial-and-error in which the same data to be used for final analysis is
used to perform exploratory statistical inferences and then representing the claim as if it
were the product of a data-independent, a-prior model is likely to lead readers of the work

to misinterpret what the finding means. So this practice has to stop.

Stopping this practice means changing incentives. Journal editors, for example, can better
serve their readers by instituting review practices that elevate valid explanations and careful
descriptive analyses over splashy significance claims. Researchers can preregister designs—or
at least keep (and then share) detailed logs of all decisions made regarding data analyses—
provided, of course, that the revelation of such decisions does not endanger human subjects

or violate applicable contracts or laws.

Exploratory analysis is an important tool for scientific advancement. Not all scientific
discovery come from a-priori theorizing; many crucially important scientific findings arose
from empirical exploration. Performing exploratory analysis is not a problem; the problem
arises when exploration is informal and unreported, and the results from exploration are
presented as if they were the result of a-prior theorizing. In this case, statistical inferences
do not have the usual properties, and there is no guarantee that the probability of making a
false claim can be controlled. Researchers can contribute to the solution by clearly reporting
which subset of the published findings are the result of exploratory trial-and-error, and which

subset is the result of an a-priori analysis.

With such changes, we can help others more accurately interpret the meaning of our
work. In so doing, our science can provide more value to more people. This would be a

genuine human accomplishment.
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6 Conclusion

Baseball, as other sports, creates a venue where we can evaluate human accomplishment.
The game begins with a set of rules. It produces a clear result—a win, a loss, or a draw. As
a result, sports offers a compact venue for comparative evaluations. It can be used to teach
important life lessons about hard work, perseverance, and the benefits of learning to work
with others.

These attributes of sports are why perceptions of cheating are a big deal. Steroid use, like
other forms of cheating, were not illegal during the steroid era. By some ethical standards,
there is nothing inherently wrong with pursuing every means possible to gain performance
advantages over competitors. But cheating alters our ability to use the context of sports to

comparatively evaluate human performance.

In many cases, cheating in sport is done for purposes of individual gain. More wins. More
money. More fame. Because, however, cheating reduces our ability to make apples-to-apples
comparisons of human achievement, instances of cheating are often treated not as crimes
against the opposition, but crimes against the sport itself. When cheating is rampant, fans
of the sport become less certain about the meaning of what they saw. Elements of uncertainty

enter tales of work ethic and perseverance.

Science also has rules. The rules are part of what make science influential. To say that
a scholar was rigorous, for example, implies that they rigorously worked with respect to a
particular subfield’s or paradigm’s set of rules. The existence and evolution of such rules

become the basis of how scholarly communities can claim to know what they know.

Scholars that engage in interactive trial-and-error can certainly experience private gains
relative to scholars who try and report a single model whatever the result. They are more
likely than others to be published. They become more likely than others to be cited. But
at what cost? If scholars are sufficiently far removed from policymakers and members of the
public who are affected by their false positives, they will not see the costs that this practice
imposes. When this practice is widespread and statistically significant claims are rewarded

by professional advancement, then the social costs are multiplied.

To be sure, many important things were discovered in political science’s steroid era. Our
work implies, however, that we may be wrong about which discoveries have value as we move
forward. Our responsibility, at this point is to be more open and transparent about how we
produce empirical claims and to change academic ecosystems so that private gain and public

service are not mutually inconsistent.
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Around the world, millions of people count on science to improve the quality of their
lives. Science is not a game. The stakes are real. Our generation has an opportunity to make
science better by more accurately interpreting the past and by incentivizing better practice.

We appreciate the efforts of everyone who is working to make this happen.
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Appendix A Constructing the Sample from the ANES
Bibliography

The initial number of observations in the ANES bibliography is 7,028 (retrieved on July 11,
2017 from the ANES website). The following procedure is executed in order to construct the

final sample:

1. Transform all strings to lower case, in order to make all string manipulations easier

and uniform.

2. Extract the year when the document was published. If this cannot be done, the obser-

vation is dropped.

3. Generate a decade variable from the year of publication following the formula:

decade = {@J - 10
10

where [.] denotes the integer floor function. So the year 1952 becomes decade 1950,
the year 1969 becomes decade 1960, etc. We only keep observations from the decades
1970, 1980, 1990 and 2000.

4. We drop all observations that have any of these combination of words in the title or
journal field: “washington post”, “new york times”, “annual meeting”, “working pa-
per”, “in the economist”, “chicago tribune”, “dissertation thesis”, “los angeles times”,
“university press”, “edited by”, “annual” and “meeting”, “annual” and “conference”,
“washington times”, “reply”, “press”, “books”, “news”, “in the”, “symposium”, “pre-

[43

pared” and “conference”, “thesis”, “.com”, “pp.”.

5. We also drop observations that do not have the symbols “:” and “-”, since these are

used in all journal articles in the ANES bibliography.

6. We drop all observations with an empty title.

After following these steps the remaining number of observations is 2,312, meaning that
4,716 are dropped. From the remaining observations we have the following distribution by

decade:
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. tab decade

decade Freq. Percent cum.
1970 334 14.45 14.45
1980 532 23.01 37.4¢6
1990 584 25.26 62.72
2000 540 23.36 86.07
2010 322 13.93 100.00
Total 2,312 100.00

After this, we generate random uniform numbers in order to keep 40 observations by

decade for a total of 200 observations.

Appendix B Rules Used for Collecting Data from the
ANES Bibliography

For each variable, we followed these rules to classify and retrieve information:

e Number of tables and number of plots:

— Count the number of distinct/independent tables and plots in the text of a paper.

— Plots are defined as: symbolic representation of a phenomenon, regardless of in-
volving numbers/data or not (e.g. graphs with horizontal and vertical axes, flow

charts that summarize a theory)

— If multiple plots are presented under a single header, ignore the author’s group-
ing /numbering scheme, but count all disticnt plots (e.g. If three plots are presented

under the header “Figure 1,” then add 3 to the number of plots variable.)

— If a table or a plot is presented in the footnote, then do not count in the respective

variable.

— If a table or a plot is presented in appendix, then do not count in the respective

variable.
e Descriptive and inferential tables:

1. Descriptive table

— Descriptive table is defined as: a table that involves data but provides no

statistical inference. It can contain summary statistics such as means and
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percentages. Even if the author makes inferences (e.g. use terms such as “ef-
fect”) or presents statistical estimates (e.g. regression coefficients), if the table
does not provide information that allows statistical inference (e.g. p-value,
confidence interval, asterisks (stars that denote statistical significance), test
statistics (z-score, t-score, chi-square)), then the table is categorized as de-

scriptive.
2. Inferential table

— Inferential table is defined as: a table that involves data and provides statisti-
cal inference. If a table contains information that allows statistical inference
(e.g. p-value, confidence interval, asterisks, test statistics with degrees of free-
dom), from which confidence interval can be built and statistical hypotheses

can be tested, then the table is categorized as inferential.
3. Non-descriptive and non-inferential table

— A table can be neither descriptive nor inferential.

— Examples of a table that is neither descriptive nor inferential include the fol-
lowing, but not limited to:
- a table with a flow chart
- a table with a list of terms

- a table with a hypothetical scenario or example

e Number of tests in a table:

— Count the number of distinct/independent tests presented in each table.

— Examples of how to count the number of tests include the following, but not
limited to:
- If an inferential table presents regression coefficients, then add the number of
coefficients with inferential information (e.g. p-value/CI/star/test-stat (t-score,
beta hat/se)) to the count variable.
- If an inferential table presents t-test statistics, then add the number of t-test
statistics with inferential information.
- If a table provides “ns” (not significant) where test-statistics or p-value should

be presented, then count that entry as a test.

e Type of model:
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— Record the type of analysis used by each model in a table.

— Examples the type of models recorded include the following, but not limited to:
OLS, Logit, Multinomial Logit, Ordered Logit, Probit, Multinomial Probit, Or-
dered Probit, Two-stage Least Squares Regression, Negative Binomial Regression,
Analysis of Covariance, Factor analysis, t-test of the difference in means, Chi-
square test of independence, Log-likelihood ratio test, Likelihood ratio test, Tau
test (Kendall rank correlation coefficient), (Pearson) correlation, Principal Com-
ponent Analysis, Goodman and Kruskal’s gamma (measure of rank correlation),
LISREL (linear structural relations), Scheffe Test, F-test.

— When a paper does not explicitly mention the type of analysis for a model, then

we record that the type of the analysis is unknown.
e Number of covariates in the model:

— For regression-type analysis, this variable counts the number of regression coeffi-

cients reported.

— For factor analysis, the number of covariates is the number of manifest vari-

ables/items in each model.

— Count the number of covariates as 1 for non-regression type analysis in an inferen-
tial table. Examples include but not limited to: t-test of the difference in means,
chi-square test of independence, log-likelihood ratio test, likelihood ratio test, tau
test (Kendall rank correlation coefficient), (Pearson) correlation, principal com-
ponent analysis, Goodman and Kruskal’s gamma (measure of rank correlation),
LISREL (linear structural relations), Scheffe Test, F-test.

e Three variables to capture the number of significant coefficients at 10, 5
and 1%:

— Count the number of significant coefficients at the 10%, 5%, 1% level, respectively,

for each model.

— If asterisks are used to indicate the statistical significance in a table, then record
the number of significant coefficients at the levels that the author reports. For
example, if an author reports statistical significance only at the 5% level, then
record the number of significant coefficients at 5% and leave blank the other two

variables (1 and 10%).
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— If the statistical inference from a table is discussed in the text of a paper, but not
in the table (header, entries, notes, footnotes of a table etc.), then count as zero

significant coefficients.

— If a table reports statistical significance for both one-tailed and two-tailed tests,

then record the number of significant coefficients with two-tailed tests.
e One-tail p-value variable:

— If a table provides one-tailed test, then record a 1. If a table does not mention
whether it uses two-tailed or one-tailed test, then record a 0. If a table mentions

that it uses two-tailed test, then record a 0.
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